MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrmo Structured version   Unicode version

Theorem sqrmo 12741
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
sqrmo  |-  ( A  e.  CC  ->  E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Distinct variable group:    x, A

Proof of Theorem sqrmo
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simplr1 1030 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x ^ 2 )  =  A )
2 simprr1 1036 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
y ^ 2 )  =  A )
31, 2eqtr4d 2478 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x ^ 2 )  =  ( y ^
2 ) )
4 sqeqor 11980 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x ^
2 )  =  ( y ^ 2 )  <-> 
( x  =  y  \/  x  =  -u y ) ) )
54ad2ant2r 746 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
( x ^ 2 )  =  ( y ^ 2 )  <->  ( x  =  y  \/  x  =  -u y ) ) )
63, 5mpbid 210 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x  =  y  \/  x  =  -u y
) )
76ord 377 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  x  =  -u y
) )
8 3simpc 987 . . . . . . . . . . 11  |-  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  ->  (
0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
9 fveq2 5691 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
Re `  x )  =  ( Re `  -u y ) )
109breq2d 4304 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  -u y
) ) )
11 oveq2 6099 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
_i  x.  x )  =  ( _i  x.  -u y ) )
12 neleq1 2709 . . . . . . . . . . . . 13  |-  ( ( _i  x.  x )  =  ( _i  x.  -u y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  -u y )  e/  RR+ ) )
1311, 12syl 16 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  -u y )  e/  RR+ ) )
1410, 13anbi12d 710 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
( 0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( 0  <_  ( Re `  -u y )  /\  (
_i  x.  -u y )  e/  RR+ ) ) )
158, 14syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  ->  (
x  =  -u y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
1615ad2antlr 726 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x  =  -u y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
177, 16syld 44 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
18 negeq 9602 . . . . . . . . . . . . . . 15  |-  ( y  =  0  ->  -u y  =  -u 0 )
19 neg0 9655 . . . . . . . . . . . . . . 15  |-  -u 0  =  0
2018, 19syl6eq 2491 . . . . . . . . . . . . . 14  |-  ( y  =  0  ->  -u y  =  0 )
2120eqeq2d 2454 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  -u y  <->  x  =  0 ) )
22 eqeq2 2452 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  y  <->  x  = 
0 ) )
2321, 22bitr4d 256 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
x  =  -u y  <->  x  =  y ) )
2423biimpcd 224 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
y  =  0  ->  x  =  y )
)
2524necon3bd 2645 . . . . . . . . . 10  |-  ( x  =  -u y  ->  ( -.  x  =  y  ->  y  =/=  0 ) )
267, 25syli 37 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  y  =/=  0 ) )
27 3simpc 987 . . . . . . . . . . . 12  |-  ( ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ )  ->  (
0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )
28 cnpart 12729 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( ( 0  <_ 
( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  <->  -.  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
2927, 28syl5ib 219 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( ( ( y ^ 2 )  =  A  /\  0  <_ 
( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  ->  -.  ( 0  <_ 
( Re `  -u y
)  /\  ( _i  x.  -u y )  e/  RR+ ) ) )
3029impancom 440 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) )  ->  ( y  =/=  0  ->  -.  (
0  <_  ( Re `  -u y )  /\  (
_i  x.  -u y )  e/  RR+ ) ) )
3130adantl 466 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
y  =/=  0  ->  -.  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
3226, 31syld 44 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  -.  ( 0  <_ 
( Re `  -u y
)  /\  ( _i  x.  -u y )  e/  RR+ ) ) )
3317, 32pm2.65d 175 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  -.  -.  x  =  y
)
3433notnotrd 113 . . . . . 6  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  x  =  y )
3534an4s 822 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) ) )  ->  x  =  y )
3635ex 434 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) )  ->  x  =  y ) )
3736a1i 11 . . 3  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
) )
3837ralrimivv 2807 . 2  |-  ( A  e.  CC  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
)
39 oveq1 6098 . . . . 5  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
4039eqeq1d 2451 . . . 4  |-  ( x  =  y  ->  (
( x ^ 2 )  =  A  <->  ( y ^ 2 )  =  A ) )
41 fveq2 5691 . . . . 5  |-  ( x  =  y  ->  (
Re `  x )  =  ( Re `  y ) )
4241breq2d 4304 . . . 4  |-  ( x  =  y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  y ) ) )
43 oveq2 6099 . . . . 5  |-  ( x  =  y  ->  (
_i  x.  x )  =  ( _i  x.  y ) )
44 neleq1 2709 . . . . 5  |-  ( ( _i  x.  x )  =  ( _i  x.  y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
4543, 44syl 16 . . . 4  |-  ( x  =  y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
4640, 42, 453anbi123d 1289 . . 3  |-  ( x  =  y  ->  (
( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )
4746rmo4 3152 . 2  |-  ( E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  <->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
)
4838, 47sylibr 212 1  |-  ( A  e.  CC  ->  E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606    e/ wnel 2607   A.wral 2715   E*wrmo 2718   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   CCcc 9280   0cc0 9282   _ici 9284    x. cmul 9287    <_ cle 9419   -ucneg 9596   2c2 10371   RR+crp 10991   ^cexp 11865   Recre 12586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-n0 10580  df-z 10647  df-uz 10862  df-rp 10992  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590
This theorem is referenced by:  resqreu  12742  sqrneg  12757  sqreu  12848
  Copyright terms: Public domain W3C validator