MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrmo Structured version   Unicode version

Theorem sqrmo 13048
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
sqrmo  |-  ( A  e.  CC  ->  E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Distinct variable group:    x, A

Proof of Theorem sqrmo
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simplr1 1038 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x ^ 2 )  =  A )
2 simprr1 1044 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
y ^ 2 )  =  A )
31, 2eqtr4d 2511 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x ^ 2 )  =  ( y ^
2 ) )
4 sqeqor 12250 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x ^
2 )  =  ( y ^ 2 )  <-> 
( x  =  y  \/  x  =  -u y ) ) )
54ad2ant2r 746 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
( x ^ 2 )  =  ( y ^ 2 )  <->  ( x  =  y  \/  x  =  -u y ) ) )
63, 5mpbid 210 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x  =  y  \/  x  =  -u y
) )
76ord 377 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  x  =  -u y
) )
8 3simpc 995 . . . . . . . . . . 11  |-  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  ->  (
0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
9 fveq2 5866 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
Re `  x )  =  ( Re `  -u y ) )
109breq2d 4459 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  -u y
) ) )
11 oveq2 6292 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
_i  x.  x )  =  ( _i  x.  -u y ) )
12 neleq1 2805 . . . . . . . . . . . . 13  |-  ( ( _i  x.  x )  =  ( _i  x.  -u y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  -u y )  e/  RR+ ) )
1311, 12syl 16 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  -u y )  e/  RR+ ) )
1410, 13anbi12d 710 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
( 0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( 0  <_  ( Re `  -u y )  /\  (
_i  x.  -u y )  e/  RR+ ) ) )
158, 14syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  ->  (
x  =  -u y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
1615ad2antlr 726 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x  =  -u y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
177, 16syld 44 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
18 negeq 9812 . . . . . . . . . . . . . . 15  |-  ( y  =  0  ->  -u y  =  -u 0 )
19 neg0 9865 . . . . . . . . . . . . . . 15  |-  -u 0  =  0
2018, 19syl6eq 2524 . . . . . . . . . . . . . 14  |-  ( y  =  0  ->  -u y  =  0 )
2120eqeq2d 2481 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  -u y  <->  x  =  0 ) )
22 eqeq2 2482 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  y  <->  x  = 
0 ) )
2321, 22bitr4d 256 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
x  =  -u y  <->  x  =  y ) )
2423biimpcd 224 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
y  =  0  ->  x  =  y )
)
2524necon3bd 2679 . . . . . . . . . 10  |-  ( x  =  -u y  ->  ( -.  x  =  y  ->  y  =/=  0 ) )
267, 25syli 37 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  y  =/=  0 ) )
27 3simpc 995 . . . . . . . . . . . 12  |-  ( ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ )  ->  (
0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )
28 cnpart 13036 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( ( 0  <_ 
( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  <->  -.  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
2927, 28syl5ib 219 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( ( ( y ^ 2 )  =  A  /\  0  <_ 
( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  ->  -.  ( 0  <_ 
( Re `  -u y
)  /\  ( _i  x.  -u y )  e/  RR+ ) ) )
3029impancom 440 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) )  ->  ( y  =/=  0  ->  -.  (
0  <_  ( Re `  -u y )  /\  (
_i  x.  -u y )  e/  RR+ ) ) )
3130adantl 466 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
y  =/=  0  ->  -.  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
3226, 31syld 44 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  -.  ( 0  <_ 
( Re `  -u y
)  /\  ( _i  x.  -u y )  e/  RR+ ) ) )
3317, 32pm2.65d 175 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  -.  -.  x  =  y
)
3433notnotrd 113 . . . . . 6  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  x  =  y )
3534an4s 824 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) ) )  ->  x  =  y )
3635ex 434 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) )  ->  x  =  y ) )
3736a1i 11 . . 3  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
) )
3837ralrimivv 2884 . 2  |-  ( A  e.  CC  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
)
39 oveq1 6291 . . . . 5  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
4039eqeq1d 2469 . . . 4  |-  ( x  =  y  ->  (
( x ^ 2 )  =  A  <->  ( y ^ 2 )  =  A ) )
41 fveq2 5866 . . . . 5  |-  ( x  =  y  ->  (
Re `  x )  =  ( Re `  y ) )
4241breq2d 4459 . . . 4  |-  ( x  =  y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  y ) ) )
43 oveq2 6292 . . . . 5  |-  ( x  =  y  ->  (
_i  x.  x )  =  ( _i  x.  y ) )
44 neleq1 2805 . . . . 5  |-  ( ( _i  x.  x )  =  ( _i  x.  y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
4543, 44syl 16 . . . 4  |-  ( x  =  y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
4640, 42, 453anbi123d 1299 . . 3  |-  ( x  =  y  ->  (
( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )
4746rmo4 3296 . 2  |-  ( E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  <->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
)
4838, 47sylibr 212 1  |-  ( A  e.  CC  ->  E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662    e/ wnel 2663   A.wral 2814   E*wrmo 2817   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   CCcc 9490   0cc0 9492   _ici 9494    x. cmul 9497    <_ cle 9629   -ucneg 9806   2c2 10585   RR+crp 11220   ^cexp 12134   Recre 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897
This theorem is referenced by:  resqreu  13049  sqrtneg  13064  sqreu  13156
  Copyright terms: Public domain W3C validator