MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrmo Structured version   Unicode version

Theorem sqrmo 13259
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
sqrmo  |-  ( A  e.  CC  ->  E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Distinct variable group:    x, A

Proof of Theorem sqrmo
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simplr1 1047 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x ^ 2 )  =  A )
2 simprr1 1053 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
y ^ 2 )  =  A )
31, 2eqtr4d 2465 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x ^ 2 )  =  ( y ^
2 ) )
4 sqeqor 12338 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x ^
2 )  =  ( y ^ 2 )  <-> 
( x  =  y  \/  x  =  -u y ) ) )
54ad2ant2r 751 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
( x ^ 2 )  =  ( y ^ 2 )  <->  ( x  =  y  \/  x  =  -u y ) ) )
63, 5mpbid 213 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x  =  y  \/  x  =  -u y
) )
76ord 378 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  x  =  -u y
) )
8 3simpc 1004 . . . . . . . . . . 11  |-  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  ->  (
0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
9 fveq2 5825 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
Re `  x )  =  ( Re `  -u y ) )
109breq2d 4378 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  -u y
) ) )
11 oveq2 6257 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
_i  x.  x )  =  ( _i  x.  -u y ) )
12 neleq1 2706 . . . . . . . . . . . . 13  |-  ( ( _i  x.  x )  =  ( _i  x.  -u y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  -u y )  e/  RR+ ) )
1311, 12syl 17 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  -u y )  e/  RR+ ) )
1410, 13anbi12d 715 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
( 0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( 0  <_  ( Re `  -u y )  /\  (
_i  x.  -u y )  e/  RR+ ) ) )
158, 14syl5ibcom 223 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  ->  (
x  =  -u y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
1615ad2antlr 731 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x  =  -u y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
177, 16syld 45 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
18 negeq 9818 . . . . . . . . . . . . . . 15  |-  ( y  =  0  ->  -u y  =  -u 0 )
19 neg0 9871 . . . . . . . . . . . . . . 15  |-  -u 0  =  0
2018, 19syl6eq 2478 . . . . . . . . . . . . . 14  |-  ( y  =  0  ->  -u y  =  0 )
2120eqeq2d 2438 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  -u y  <->  x  =  0 ) )
22 eqeq2 2439 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  y  <->  x  = 
0 ) )
2321, 22bitr4d 259 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
x  =  -u y  <->  x  =  y ) )
2423biimpcd 227 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
y  =  0  ->  x  =  y )
)
2524necon3bd 2615 . . . . . . . . . 10  |-  ( x  =  -u y  ->  ( -.  x  =  y  ->  y  =/=  0 ) )
267, 25syli 38 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  y  =/=  0 ) )
27 3simpc 1004 . . . . . . . . . . . 12  |-  ( ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ )  ->  (
0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )
28 cnpart 13247 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( ( 0  <_ 
( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  <->  -.  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
2927, 28syl5ib 222 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( ( ( y ^ 2 )  =  A  /\  0  <_ 
( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  ->  -.  ( 0  <_ 
( Re `  -u y
)  /\  ( _i  x.  -u y )  e/  RR+ ) ) )
3029impancom 441 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) )  ->  ( y  =/=  0  ->  -.  (
0  <_  ( Re `  -u y )  /\  (
_i  x.  -u y )  e/  RR+ ) ) )
3130adantl 467 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
y  =/=  0  ->  -.  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
3226, 31syld 45 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  -.  ( 0  <_ 
( Re `  -u y
)  /\  ( _i  x.  -u y )  e/  RR+ ) ) )
3317, 32pm2.65d 178 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  -.  -.  x  =  y
)
3433notnotrd 116 . . . . . 6  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  x  =  y )
3534an4s 833 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) ) )  ->  x  =  y )
3635ex 435 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) )  ->  x  =  y ) )
3736a1i 11 . . 3  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
) )
3837ralrimivv 2785 . 2  |-  ( A  e.  CC  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
)
39 oveq1 6256 . . . . 5  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
4039eqeq1d 2430 . . . 4  |-  ( x  =  y  ->  (
( x ^ 2 )  =  A  <->  ( y ^ 2 )  =  A ) )
41 fveq2 5825 . . . . 5  |-  ( x  =  y  ->  (
Re `  x )  =  ( Re `  y ) )
4241breq2d 4378 . . . 4  |-  ( x  =  y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  y ) ) )
43 oveq2 6257 . . . . 5  |-  ( x  =  y  ->  (
_i  x.  x )  =  ( _i  x.  y ) )
44 neleq1 2706 . . . . 5  |-  ( ( _i  x.  x )  =  ( _i  x.  y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
4543, 44syl 17 . . . 4  |-  ( x  =  y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
4640, 42, 453anbi123d 1335 . . 3  |-  ( x  =  y  ->  (
( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )
4746rmo4 3206 . 2  |-  ( E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  <->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
)
4838, 47sylibr 215 1  |-  ( A  e.  CC  ->  E* x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2599    e/ wnel 2600   A.wral 2714   E*wrmo 2717   class class class wbr 4366   ` cfv 5544  (class class class)co 6249   CCcc 9488   0cc0 9490   _ici 9492    x. cmul 9495    <_ cle 9627   -ucneg 9812   2c2 10610   RR+crp 11253   ^cexp 12222   Recre 13104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-n0 10821  df-z 10889  df-uz 11111  df-rp 11254  df-seq 12164  df-exp 12223  df-cj 13106  df-re 13107  df-im 13108
This theorem is referenced by:  resqreu  13260  sqrtneg  13275  sqreu  13367
  Copyright terms: Public domain W3C validator