MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem7 Structured version   Visualization version   Unicode version

Theorem sqrlem7 13389
Description: Lemma for 01sqrex 13390. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1  |-  S  =  { x  e.  RR+  |  ( x ^ 2 )  <_  A }
sqrlem1.2  |-  B  =  sup ( S ,  RR ,  <  )
sqrlem5.3  |-  T  =  { y  |  E. a  e.  S  E. b  e.  S  y  =  ( a  x.  b ) }
Assertion
Ref Expression
sqrlem7  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  =  A )
Distinct variable groups:    a, b,
y, S    x, a, A, b, y    y, B
Allowed substitution hints:    B( x, a, b)    S( x)    T( x, y, a, b)

Proof of Theorem sqrlem7
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . 3  |-  S  =  { x  e.  RR+  |  ( x ^ 2 )  <_  A }
2 sqrlem1.2 . . 3  |-  B  =  sup ( S ,  RR ,  <  )
3 sqrlem5.3 . . 3  |-  T  =  { y  |  E. a  e.  S  E. b  e.  S  y  =  ( a  x.  b ) }
41, 2, 3sqrlem6 13388 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  <_  A )
51, 2sqrlem3 13385 . . . . 5  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. y  e.  RR  A. z  e.  S  z  <_  y
) )
65adantr 472 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. y  e.  RR  A. z  e.  S  z  <_  y
) )
71, 2sqrlem4 13386 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B  e.  RR+  /\  B  <_  1 ) )
87adantr 472 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B  e.  RR+  /\  B  <_ 
1 ) )
98simpld 466 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  B  e.  RR+ )
10 rpre 11331 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  A  e.  RR )
1110adantr 472 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  A  e.  RR )
12 rpre 11331 . . . . . . . . . . . . 13  |-  ( B  e.  RR+  ->  B  e.  RR )
1312adantr 472 . . . . . . . . . . . 12  |-  ( ( B  e.  RR+  /\  B  <_  1 )  ->  B  e.  RR )
147, 13syl 17 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  B  e.  RR )
1514resqcld 12480 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  e.  RR )
1611, 15resubcld 10068 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( A  -  ( B ^ 2 ) )  e.  RR )
1716adantr 472 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  e.  RR )
1815, 11posdifd 10221 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( B ^ 2 )  <  A  <->  0  <  ( A  -  ( B ^ 2 ) ) ) )
1918biimpa 492 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  0  <  ( A  -  ( B ^ 2 ) ) )
2017, 19elrpd 11361 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  e.  RR+ )
21 3re 10705 . . . . . . . 8  |-  3  e.  RR
22 3pos 10725 . . . . . . . 8  |-  0  <  3
2321, 22elrpii 11328 . . . . . . 7  |-  3  e.  RR+
24 rpdivcl 11348 . . . . . . 7  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  RR+  /\  3  e.  RR+ )  ->  (
( A  -  ( B ^ 2 ) )  /  3 )  e.  RR+ )
2520, 23, 24sylancl 675 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  RR+ )
269, 25rpaddcld 11379 . . . . 5  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  e.  RR+ )
2714adantr 472 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  B  e.  RR )
2827recnd 9687 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  B  e.  CC )
29 3nn 10791 . . . . . . . . . . 11  |-  3  e.  NN
30 nndivre 10667 . . . . . . . . . . 11  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  RR  /\  3  e.  NN )  ->  (
( A  -  ( B ^ 2 ) )  /  3 )  e.  RR )
3116, 29, 30sylancl 675 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( A  -  ( B ^ 2 ) )  /  3 )  e.  RR )
3231adantr 472 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  RR )
3332recnd 9687 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  CC )
34 binom2 12427 . . . . . . . 8  |-  ( ( B  e.  CC  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  CC )  -> 
( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  =  ( ( ( B ^ 2 )  +  ( 2  x.  ( B  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^ 2 ) ) )
3528, 33, 34syl2anc 673 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  =  ( ( ( B ^ 2 )  +  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^ 2 ) ) )
3615adantr 472 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B ^ 2 )  e.  RR )
3736recnd 9687 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B ^ 2 )  e.  CC )
38 2re 10701 . . . . . . . . . 10  |-  2  e.  RR
3927, 32remulcld 9689 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  e.  RR )
40 remulcl 9642 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( B  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) )  e.  RR )  -> 
( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )  e.  RR )
4138, 39, 40sylancr 676 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )  e.  RR )
4241recnd 9687 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )  e.  CC )
4332resqcld 12480 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( A  -  ( B ^ 2 ) )  /  3 ) ^
2 )  e.  RR )
4443recnd 9687 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( A  -  ( B ^ 2 ) )  /  3 ) ^
2 )  e.  CC )
4537, 42, 44addassd 9683 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( B ^ 2 )  +  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )  +  ( ( ( A  -  ( B ^
2 ) )  / 
3 ) ^ 2 ) )  =  ( ( B ^ 2 )  +  ( ( 2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) ) ) )
4635, 45eqtrd 2505 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  =  ( ( B ^
2 )  +  ( ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) ) ) )
47 2cn 10702 . . . . . . . . . . . . 13  |-  2  e.  CC
48 mulass 9645 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  B  e.  CC  /\  (
( A  -  ( B ^ 2 ) )  /  3 )  e.  CC )  ->  (
( 2  x.  B
)  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  =  ( 2  x.  ( B  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
4947, 48mp3an1 1377 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  CC )  -> 
( ( 2  x.  B )  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) )  =  ( 2  x.  ( B  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
5028, 33, 49syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  B )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  =  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
5150eqcomd 2477 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )  =  ( ( 2  x.  B
)  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )
5233sqvald 12451 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( A  -  ( B ^ 2 ) )  /  3 ) ^
2 )  =  ( ( ( A  -  ( B ^ 2 ) )  /  3 )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )
5351, 52oveq12d 6326 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) )  =  ( ( ( 2  x.  B )  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 )  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
54 remulcl 9642 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  B
)  e.  RR )
5538, 27, 54sylancr 676 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  B )  e.  RR )
5655recnd 9687 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  B )  e.  CC )
5756, 33, 33adddird 9686 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  =  ( ( ( 2  x.  B )  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 )  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
5853, 57eqtr4d 2508 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) )  =  ( ( ( 2  x.  B )  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )
597simprd 470 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  B  <_  1 )
60 2pos 10723 . . . . . . . . . . . . . . . . 17  |-  0  <  2
61 1re 9660 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
62 lemul2 10480 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  RR  /\  1  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( B  <_ 
1  <->  ( 2  x.  B )  <_  (
2  x.  1 ) ) )
6361, 62mp3an2 1378 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( B  <_  1  <->  ( 2  x.  B )  <_  (
2  x.  1 ) ) )
6438, 60, 63mpanr12 699 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  ( B  <_  1  <->  ( 2  x.  B )  <_ 
( 2  x.  1 ) ) )
6514, 64syl 17 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B  <_  1  <->  ( 2  x.  B )  <_ 
( 2  x.  1 ) ) )
6659, 65mpbid 215 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
2  x.  B )  <_  ( 2  x.  1 ) )
6766adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  B )  <_ 
( 2  x.  1 ) )
68 2t1e2 10781 . . . . . . . . . . . . 13  |-  ( 2  x.  1 )  =  2
6967, 68syl6breq 4435 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  B )  <_ 
2 )
7011adantr 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  A  e.  RR )
7161a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  1  e.  RR )
7227sqge0d 12481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  0  <_  ( B ^ 2 ) )
7370, 36addge01d 10222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 0  <_  ( B ^
2 )  <->  A  <_  ( A  +  ( B ^ 2 ) ) ) )
7472, 73mpbid 215 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  A  <_  ( A  +  ( B ^ 2 ) ) )
7570, 36, 70lesubaddd 10231 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  <_  A  <->  A  <_  ( A  +  ( B ^ 2 ) ) ) )
7674, 75mpbird 240 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  <_  A )
77 simplr 770 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  A  <_  1 )
7817, 70, 71, 76, 77letrd 9809 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  <_ 
1 )
79 1le3 10849 . . . . . . . . . . . . . . . 16  |-  1  <_  3
80 letr 9745 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  RR  /\  1  e.  RR  /\  3  e.  RR )  ->  (
( ( A  -  ( B ^ 2 ) )  <_  1  /\  1  <_  3 )  -> 
( A  -  ( B ^ 2 ) )  <_  3 ) )
8161, 21, 80mp3an23 1382 . . . . . . . . . . . . . . . . 17  |-  ( ( A  -  ( B ^ 2 ) )  e.  RR  ->  (
( ( A  -  ( B ^ 2 ) )  <_  1  /\  1  <_  3 )  -> 
( A  -  ( B ^ 2 ) )  <_  3 ) )
8217, 81syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( A  -  ( B ^ 2 ) )  <_  1  /\  1  <_  3 )  ->  ( A  -  ( B ^ 2 ) )  <_  3 ) )
8379, 82mpan2i 691 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  <_  1  ->  ( A  -  ( B ^ 2 ) )  <_  3 ) )
8478, 83mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  <_ 
3 )
85 3t1e3 10783 . . . . . . . . . . . . . 14  |-  ( 3  x.  1 )  =  3
8684, 85syl6breqr 4436 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  <_ 
( 3  x.  1 ) )
87 ledivmul 10503 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  RR  /\  1  e.  RR  /\  ( 3  e.  RR  /\  0  <  3 ) )  -> 
( ( ( A  -  ( B ^
2 ) )  / 
3 )  <_  1  <->  ( A  -  ( B ^ 2 ) )  <_  ( 3  x.  1 ) ) )
8861, 87mp3an2 1378 . . . . . . . . . . . . . . 15  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  RR  /\  (
3  e.  RR  /\  0  <  3 ) )  ->  ( ( ( A  -  ( B ^ 2 ) )  /  3 )  <_ 
1  <->  ( A  -  ( B ^ 2 ) )  <_  ( 3  x.  1 ) ) )
8921, 22, 88mpanr12 699 . . . . . . . . . . . . . 14  |-  ( ( A  -  ( B ^ 2 ) )  e.  RR  ->  (
( ( A  -  ( B ^ 2 ) )  /  3 )  <_  1  <->  ( A  -  ( B ^
2 ) )  <_ 
( 3  x.  1 ) ) )
9017, 89syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( A  -  ( B ^ 2 ) )  /  3 )  <_ 
1  <->  ( A  -  ( B ^ 2 ) )  <_  ( 3  x.  1 ) ) )
9186, 90mpbird 240 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  /  3 )  <_ 
1 )
92 le2add 10117 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  B )  e.  RR  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  RR )  /\  ( 2  e.  RR  /\  1  e.  RR ) )  ->  ( (
( 2  x.  B
)  <_  2  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  <_  1 )  -> 
( ( 2  x.  B )  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  ( 2  +  1 ) ) )
9338, 61, 92mpanr12 699 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  B
)  e.  RR  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  RR )  -> 
( ( ( 2  x.  B )  <_ 
2  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  <_ 
1 )  ->  (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  ( 2  +  1 ) ) )
9455, 32, 93syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( 2  x.  B
)  <_  2  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  <_  1 )  -> 
( ( 2  x.  B )  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  ( 2  +  1 ) ) )
9569, 91, 94mp2and 693 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  B )  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_ 
( 2  +  1 ) )
96 df-3 10691 . . . . . . . . . . 11  |-  3  =  ( 2  +  1 )
9795, 96syl6breqr 4436 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  B )  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_ 
3 )
9855, 32readdcld 9688 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  B )  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  e.  RR )
9921a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  3  e.  RR )
10098, 99, 25lemul1d 11404 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  3  <->  ( (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_ 
( 3  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
10197, 100mpbid 215 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_ 
( 3  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) )
10217recnd 9687 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  e.  CC )
103 3cn 10706 . . . . . . . . . . 11  |-  3  e.  CC
104 3ne0 10726 . . . . . . . . . . 11  |-  3  =/=  0
105 divcan2 10300 . . . . . . . . . . 11  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
3  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  =  ( A  -  ( B ^ 2 ) ) )
106103, 104, 105mp3an23 1382 . . . . . . . . . 10  |-  ( ( A  -  ( B ^ 2 ) )  e.  CC  ->  (
3  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  =  ( A  -  ( B ^ 2 ) ) )
107102, 106syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 3  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  =  ( A  -  ( B ^ 2 ) ) )
108101, 107breqtrd 4420 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_ 
( A  -  ( B ^ 2 ) ) )
10958, 108eqbrtrd 4416 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) )  <_ 
( A  -  ( B ^ 2 ) ) )
11041, 43readdcld 9688 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) )  e.  RR )
11136, 110, 70leaddsub2d 10236 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( B ^ 2 )  +  ( ( 2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) ) )  <_  A  <->  ( (
2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) )  <_ 
( A  -  ( B ^ 2 ) ) ) )
112109, 111mpbird 240 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( B ^ 2 )  +  ( ( 2  x.  ( B  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) ) )  <_  A )
11346, 112eqbrtrd 4416 . . . . 5  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  <_  A )
114 oveq1 6315 . . . . . . 7  |-  ( y  =  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  ->  ( y ^ 2 )  =  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 ) )
115114breq1d 4405 . . . . . 6  |-  ( y  =  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  ->  ( (
y ^ 2 )  <_  A  <->  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  <_  A ) )
116 oveq1 6315 . . . . . . . . 9  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
117116breq1d 4405 . . . . . . . 8  |-  ( x  =  y  ->  (
( x ^ 2 )  <_  A  <->  ( y ^ 2 )  <_  A ) )
118117cbvrabv 3030 . . . . . . 7  |-  { x  e.  RR+  |  ( x ^ 2 )  <_  A }  =  {
y  e.  RR+  |  ( y ^ 2 )  <_  A }
1191, 118eqtri 2493 . . . . . 6  |-  S  =  { y  e.  RR+  |  ( y ^ 2 )  <_  A }
120115, 119elrab2 3186 . . . . 5  |-  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  e.  S  <->  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  e.  RR+  /\  (
( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  <_  A ) )
12126, 113, 120sylanbrc 677 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  e.  S )
122 suprub 10592 . . . . 5  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. y  e.  RR  A. z  e.  S  z  <_  y )  /\  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  e.  S )  ->  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  sup ( S ,  RR ,  <  ) )
123122, 2syl6breqr 4436 . . . 4  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. y  e.  RR  A. z  e.  S  z  <_  y )  /\  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  e.  S )  ->  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  B )
1246, 121, 123syl2anc 673 . . 3  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_  B )
12525rpgt0d 11367 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  0  <  ( ( A  -  ( B ^ 2 ) )  /  3 ) )
12631, 14ltaddposd 10218 . . . . . 6  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
0  <  ( ( A  -  ( B ^ 2 ) )  /  3 )  <->  B  <  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
12714, 31readdcld 9688 . . . . . . 7  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  e.  RR )
12814, 127ltnled 9799 . . . . . 6  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B  <  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <->  -.  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_  B ) )
129126, 128bitrd 261 . . . . 5  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
0  <  ( ( A  -  ( B ^ 2 ) )  /  3 )  <->  -.  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  B ) )
130129biimpa 492 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  0  <  (
( A  -  ( B ^ 2 ) )  /  3 ) )  ->  -.  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_  B )
131125, 130syldan 478 . . 3  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  -.  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  B )
132124, 131pm2.65da 586 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  -.  ( B ^ 2 )  <  A )
13315, 11eqleltd 9796 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( B ^ 2 )  =  A  <->  ( ( B ^ 2 )  <_  A  /\  -.  ( B ^ 2 )  < 
A ) ) )
1344, 132, 133mpbir2and 936 1  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   {cab 2457    =/= wne 2641   A.wral 2756   E.wrex 2757   {crab 2760    C_ wss 3390   (/)c0 3722   class class class wbr 4395  (class class class)co 6308   supcsup 7972   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   3c3 10682   RR+crp 11325   ^cexp 12310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-sup 7974  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-seq 12252  df-exp 12311
This theorem is referenced by:  01sqrex  13390
  Copyright terms: Public domain W3C validator