MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem7 Structured version   Unicode version

Theorem sqrlem7 12860
Description: Lemma for 01sqrex 12861. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1  |-  S  =  { x  e.  RR+  |  ( x ^ 2 )  <_  A }
sqrlem1.2  |-  B  =  sup ( S ,  RR ,  <  )
sqrlem5.3  |-  T  =  { y  |  E. a  e.  S  E. b  e.  S  y  =  ( a  x.  b ) }
Assertion
Ref Expression
sqrlem7  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  =  A )
Distinct variable groups:    a, b,
y, S    x, a, A, b, y    y, B
Allowed substitution hints:    B( x, a, b)    S( x)    T( x, y, a, b)

Proof of Theorem sqrlem7
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . 3  |-  S  =  { x  e.  RR+  |  ( x ^ 2 )  <_  A }
2 sqrlem1.2 . . 3  |-  B  =  sup ( S ,  RR ,  <  )
3 sqrlem5.3 . . 3  |-  T  =  { y  |  E. a  e.  S  E. b  e.  S  y  =  ( a  x.  b ) }
41, 2, 3sqrlem6 12859 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  <_  A )
51, 2sqrlem3 12856 . . . . 5  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. y  e.  RR  A. z  e.  S  z  <_  y
) )
65adantr 465 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. y  e.  RR  A. z  e.  S  z  <_  y
) )
71, 2sqrlem4 12857 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B  e.  RR+  /\  B  <_  1 ) )
87adantr 465 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B  e.  RR+  /\  B  <_ 
1 ) )
98simpld 459 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  B  e.  RR+ )
10 rpre 11112 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  A  e.  RR )
1110adantr 465 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  A  e.  RR )
12 rpre 11112 . . . . . . . . . . . . 13  |-  ( B  e.  RR+  ->  B  e.  RR )
1312adantr 465 . . . . . . . . . . . 12  |-  ( ( B  e.  RR+  /\  B  <_  1 )  ->  B  e.  RR )
147, 13syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  B  e.  RR )
1514resqcld 12155 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  e.  RR )
1611, 15resubcld 9891 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( A  -  ( B ^ 2 ) )  e.  RR )
1716adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  e.  RR )
1815, 11posdifd 10041 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( B ^ 2 )  <  A  <->  0  <  ( A  -  ( B ^ 2 ) ) ) )
1918biimpa 484 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  0  <  ( A  -  ( B ^ 2 ) ) )
2017, 19elrpd 11140 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  e.  RR+ )
21 3re 10510 . . . . . . . 8  |-  3  e.  RR
22 3pos 10530 . . . . . . . 8  |-  0  <  3
2321, 22elrpii 11109 . . . . . . 7  |-  3  e.  RR+
24 rpdivcl 11128 . . . . . . 7  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  RR+  /\  3  e.  RR+ )  ->  (
( A  -  ( B ^ 2 ) )  /  3 )  e.  RR+ )
2520, 23, 24sylancl 662 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  RR+ )
269, 25rpaddcld 11157 . . . . 5  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  e.  RR+ )
2714adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  B  e.  RR )
2827recnd 9527 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  B  e.  CC )
29 3nn 10595 . . . . . . . . . . 11  |-  3  e.  NN
30 nndivre 10472 . . . . . . . . . . 11  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  RR  /\  3  e.  NN )  ->  (
( A  -  ( B ^ 2 ) )  /  3 )  e.  RR )
3116, 29, 30sylancl 662 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( A  -  ( B ^ 2 ) )  /  3 )  e.  RR )
3231adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  RR )
3332recnd 9527 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  CC )
34 binom2 12102 . . . . . . . 8  |-  ( ( B  e.  CC  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  CC )  -> 
( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  =  ( ( ( B ^ 2 )  +  ( 2  x.  ( B  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^ 2 ) ) )
3528, 33, 34syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  =  ( ( ( B ^ 2 )  +  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^ 2 ) ) )
3615adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B ^ 2 )  e.  RR )
3736recnd 9527 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B ^ 2 )  e.  CC )
38 2re 10506 . . . . . . . . . 10  |-  2  e.  RR
3927, 32remulcld 9529 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  e.  RR )
40 remulcl 9482 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( B  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) )  e.  RR )  -> 
( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )  e.  RR )
4138, 39, 40sylancr 663 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )  e.  RR )
4241recnd 9527 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )  e.  CC )
4332resqcld 12155 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( A  -  ( B ^ 2 ) )  /  3 ) ^
2 )  e.  RR )
4443recnd 9527 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( A  -  ( B ^ 2 ) )  /  3 ) ^
2 )  e.  CC )
4537, 42, 44addassd 9523 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( B ^ 2 )  +  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )  +  ( ( ( A  -  ( B ^
2 ) )  / 
3 ) ^ 2 ) )  =  ( ( B ^ 2 )  +  ( ( 2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) ) ) )
4635, 45eqtrd 2495 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  =  ( ( B ^
2 )  +  ( ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) ) ) )
47 2cn 10507 . . . . . . . . . . . . 13  |-  2  e.  CC
48 mulass 9485 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  B  e.  CC  /\  (
( A  -  ( B ^ 2 ) )  /  3 )  e.  CC )  ->  (
( 2  x.  B
)  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  =  ( 2  x.  ( B  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
4947, 48mp3an1 1302 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  CC )  -> 
( ( 2  x.  B )  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) )  =  ( 2  x.  ( B  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
5028, 33, 49syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  B )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  =  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
5150eqcomd 2462 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  ( B  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )  =  ( ( 2  x.  B
)  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )
5233sqvald 12126 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( A  -  ( B ^ 2 ) )  /  3 ) ^
2 )  =  ( ( ( A  -  ( B ^ 2 ) )  /  3 )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )
5351, 52oveq12d 6221 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) )  =  ( ( ( 2  x.  B )  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 )  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
54 remulcl 9482 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  B
)  e.  RR )
5538, 27, 54sylancr 663 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  B )  e.  RR )
5655recnd 9527 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  B )  e.  CC )
5756, 33, 33adddird 9526 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  =  ( ( ( 2  x.  B )  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 )  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
5853, 57eqtr4d 2498 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) )  =  ( ( ( 2  x.  B )  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) )
597simprd 463 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  B  <_  1 )
60 2pos 10528 . . . . . . . . . . . . . . . . 17  |-  0  <  2
61 1re 9500 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
62 lemul2 10297 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  RR  /\  1  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( B  <_ 
1  <->  ( 2  x.  B )  <_  (
2  x.  1 ) ) )
6361, 62mp3an2 1303 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( B  <_  1  <->  ( 2  x.  B )  <_  (
2  x.  1 ) ) )
6438, 60, 63mpanr12 685 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  ( B  <_  1  <->  ( 2  x.  B )  <_ 
( 2  x.  1 ) ) )
6514, 64syl 16 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B  <_  1  <->  ( 2  x.  B )  <_ 
( 2  x.  1 ) ) )
6659, 65mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
2  x.  B )  <_  ( 2  x.  1 ) )
6766adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  B )  <_ 
( 2  x.  1 ) )
68 2t1e2 10585 . . . . . . . . . . . . 13  |-  ( 2  x.  1 )  =  2
6967, 68syl6breq 4442 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 2  x.  B )  <_ 
2 )
7011adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  A  e.  RR )
7161a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  1  e.  RR )
7227sqge0d 12156 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  0  <_  ( B ^ 2 ) )
7370, 36addge01d 10042 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 0  <_  ( B ^
2 )  <->  A  <_  ( A  +  ( B ^ 2 ) ) ) )
7472, 73mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  A  <_  ( A  +  ( B ^ 2 ) ) )
7570, 36, 70lesubaddd 10051 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  <_  A  <->  A  <_  ( A  +  ( B ^ 2 ) ) ) )
7674, 75mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  <_  A )
77 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  A  <_  1 )
7817, 70, 71, 76, 77letrd 9643 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  <_ 
1 )
79 1le3 10653 . . . . . . . . . . . . . . . 16  |-  1  <_  3
80 letr 9583 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  RR  /\  1  e.  RR  /\  3  e.  RR )  ->  (
( ( A  -  ( B ^ 2 ) )  <_  1  /\  1  <_  3 )  -> 
( A  -  ( B ^ 2 ) )  <_  3 ) )
8161, 21, 80mp3an23 1307 . . . . . . . . . . . . . . . . 17  |-  ( ( A  -  ( B ^ 2 ) )  e.  RR  ->  (
( ( A  -  ( B ^ 2 ) )  <_  1  /\  1  <_  3 )  -> 
( A  -  ( B ^ 2 ) )  <_  3 ) )
8217, 81syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( A  -  ( B ^ 2 ) )  <_  1  /\  1  <_  3 )  ->  ( A  -  ( B ^ 2 ) )  <_  3 ) )
8379, 82mpan2i 677 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  <_  1  ->  ( A  -  ( B ^ 2 ) )  <_  3 ) )
8478, 83mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  <_ 
3 )
85 3t1e3 10587 . . . . . . . . . . . . . 14  |-  ( 3  x.  1 )  =  3
8684, 85syl6breqr 4443 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  <_ 
( 3  x.  1 ) )
87 ledivmul 10320 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  RR  /\  1  e.  RR  /\  ( 3  e.  RR  /\  0  <  3 ) )  -> 
( ( ( A  -  ( B ^
2 ) )  / 
3 )  <_  1  <->  ( A  -  ( B ^ 2 ) )  <_  ( 3  x.  1 ) ) )
8861, 87mp3an2 1303 . . . . . . . . . . . . . . 15  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  RR  /\  (
3  e.  RR  /\  0  <  3 ) )  ->  ( ( ( A  -  ( B ^ 2 ) )  /  3 )  <_ 
1  <->  ( A  -  ( B ^ 2 ) )  <_  ( 3  x.  1 ) ) )
8921, 22, 88mpanr12 685 . . . . . . . . . . . . . 14  |-  ( ( A  -  ( B ^ 2 ) )  e.  RR  ->  (
( ( A  -  ( B ^ 2 ) )  /  3 )  <_  1  <->  ( A  -  ( B ^
2 ) )  <_ 
( 3  x.  1 ) ) )
9017, 89syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( A  -  ( B ^ 2 ) )  /  3 )  <_ 
1  <->  ( A  -  ( B ^ 2 ) )  <_  ( 3  x.  1 ) ) )
9186, 90mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( A  -  ( B ^ 2 ) )  /  3 )  <_ 
1 )
92 le2add 9936 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  B )  e.  RR  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  RR )  /\  ( 2  e.  RR  /\  1  e.  RR ) )  ->  ( (
( 2  x.  B
)  <_  2  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  <_  1 )  -> 
( ( 2  x.  B )  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  ( 2  +  1 ) ) )
9338, 61, 92mpanr12 685 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  B
)  e.  RR  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  e.  RR )  -> 
( ( ( 2  x.  B )  <_ 
2  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  <_ 
1 )  ->  (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  ( 2  +  1 ) ) )
9455, 32, 93syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( 2  x.  B
)  <_  2  /\  ( ( A  -  ( B ^ 2 ) )  /  3 )  <_  1 )  -> 
( ( 2  x.  B )  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  ( 2  +  1 ) ) )
9569, 91, 94mp2and 679 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  B )  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_ 
( 2  +  1 ) )
96 df-3 10496 . . . . . . . . . . 11  |-  3  =  ( 2  +  1 )
9795, 96syl6breqr 4443 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  B )  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_ 
3 )
9855, 32readdcld 9528 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  B )  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  e.  RR )
9921a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  3  e.  RR )
10098, 99, 25lemul1d 11181 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  3  <->  ( (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_ 
( 3  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
10197, 100mpbid 210 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_ 
( 3  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) )
10217recnd 9527 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( A  -  ( B ^
2 ) )  e.  CC )
103 3cn 10511 . . . . . . . . . . 11  |-  3  e.  CC
104 3ne0 10531 . . . . . . . . . . 11  |-  3  =/=  0
105 divcan2 10117 . . . . . . . . . . 11  |-  ( ( ( A  -  ( B ^ 2 ) )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
3  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  =  ( A  -  ( B ^ 2 ) ) )
106103, 104, 105mp3an23 1307 . . . . . . . . . 10  |-  ( ( A  -  ( B ^ 2 ) )  e.  CC  ->  (
3  x.  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  =  ( A  -  ( B ^ 2 ) ) )
107102, 106syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( 3  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  =  ( A  -  ( B ^ 2 ) ) )
108101, 107breqtrd 4427 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( 2  x.  B
)  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_ 
( A  -  ( B ^ 2 ) ) )
10958, 108eqbrtrd 4423 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) )  <_ 
( A  -  ( B ^ 2 ) ) )
11041, 43readdcld 9528 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) )  e.  RR )
11136, 110, 70leaddsub2d 10056 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( (
( B ^ 2 )  +  ( ( 2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) ) )  <_  A  <->  ( (
2  x.  ( B  x.  ( ( A  -  ( B ^
2 ) )  / 
3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) )  <_ 
( A  -  ( B ^ 2 ) ) ) )
112109, 111mpbird 232 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( B ^ 2 )  +  ( ( 2  x.  ( B  x.  (
( A  -  ( B ^ 2 ) )  /  3 ) ) )  +  ( ( ( A  -  ( B ^ 2 ) )  /  3 ) ^
2 ) ) )  <_  A )
11346, 112eqbrtrd 4423 . . . . 5  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  <_  A )
114 oveq1 6210 . . . . . . 7  |-  ( y  =  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  ->  ( y ^ 2 )  =  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 ) )
115114breq1d 4413 . . . . . 6  |-  ( y  =  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  ->  ( (
y ^ 2 )  <_  A  <->  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  <_  A ) )
116 oveq1 6210 . . . . . . . . 9  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
117116breq1d 4413 . . . . . . . 8  |-  ( x  =  y  ->  (
( x ^ 2 )  <_  A  <->  ( y ^ 2 )  <_  A ) )
118117cbvrabv 3077 . . . . . . 7  |-  { x  e.  RR+  |  ( x ^ 2 )  <_  A }  =  {
y  e.  RR+  |  ( y ^ 2 )  <_  A }
1191, 118eqtri 2483 . . . . . 6  |-  S  =  { y  e.  RR+  |  ( y ^ 2 )  <_  A }
120115, 119elrab2 3226 . . . . 5  |-  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  e.  S  <->  ( ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  e.  RR+  /\  (
( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ^ 2 )  <_  A ) )
12126, 113, 120sylanbrc 664 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  e.  S )
122 suprub 10406 . . . . 5  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. y  e.  RR  A. z  e.  S  z  <_  y )  /\  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  e.  S )  ->  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  sup ( S ,  RR ,  <  ) )
123122, 2syl6breqr 4443 . . . 4  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. y  e.  RR  A. z  e.  S  z  <_  y )  /\  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  e.  S )  ->  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  B )
1246, 121, 123syl2anc 661 . . 3  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_  B )
12525rpgt0d 11145 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  0  <  ( ( A  -  ( B ^ 2 ) )  /  3 ) )
12631, 14ltaddposd 10038 . . . . . 6  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
0  <  ( ( A  -  ( B ^ 2 ) )  /  3 )  <->  B  <  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) ) ) )
12714, 31readdcld 9528 . . . . . . 7  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  e.  RR )
12814, 127ltnled 9636 . . . . . 6  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B  <  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <->  -.  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_  B ) )
129126, 128bitrd 253 . . . . 5  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
0  <  ( ( A  -  ( B ^ 2 ) )  /  3 )  <->  -.  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  B ) )
130129biimpa 484 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  0  <  (
( A  -  ( B ^ 2 ) )  /  3 ) )  ->  -.  ( B  +  ( ( A  -  ( B ^
2 ) )  / 
3 ) )  <_  B )
131125, 130syldan 470 . . 3  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( B ^
2 )  <  A
)  ->  -.  ( B  +  ( ( A  -  ( B ^ 2 ) )  /  3 ) )  <_  B )
132124, 131pm2.65da 576 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  -.  ( B ^ 2 )  <  A )
13315, 11eqleltd 9633 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( B ^ 2 )  =  A  <->  ( ( B ^ 2 )  <_  A  /\  -.  ( B ^ 2 )  < 
A ) ) )
1344, 132, 133mpbir2and 913 1  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   {cab 2439    =/= wne 2648   A.wral 2799   E.wrex 2800   {crab 2803    C_ wss 3439   (/)c0 3748   class class class wbr 4403  (class class class)co 6203   supcsup 7805   CCcc 9395   RRcr 9396   0cc0 9397   1c1 9398    + caddc 9400    x. cmul 9402    < clt 9533    <_ cle 9534    - cmin 9710    / cdiv 10108   NNcn 10437   2c2 10486   3c3 10487   RR+crp 11106   ^cexp 11986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-sup 7806  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-3 10496  df-n0 10695  df-z 10762  df-uz 10977  df-rp 11107  df-seq 11928  df-exp 11987
This theorem is referenced by:  01sqrex  12861
  Copyright terms: Public domain W3C validator