MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem2 Structured version   Unicode version

Theorem sqrlem2 12754
Description: Lemma for 01sqrex 12760. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1  |-  S  =  { x  e.  RR+  |  ( x ^ 2 )  <_  A }
sqrlem1.2  |-  B  =  sup ( S ,  RR ,  <  )
Assertion
Ref Expression
sqrlem2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  A  e.  S )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    S( x)

Proof of Theorem sqrlem2
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  A  e.  RR+ )
2 rpre 11018 . . . . 5  |-  ( A  e.  RR+  ->  A  e.  RR )
3 rpgt0 11023 . . . . 5  |-  ( A  e.  RR+  ->  0  < 
A )
4 1re 9406 . . . . . 6  |-  1  e.  RR
5 lemul1 10202 . . . . . 6  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( A  <_  1  <->  ( A  x.  A )  <_  ( 1  x.  A ) ) )
64, 5mp3an2 1302 . . . . 5  |-  ( ( A  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( A  <_  1  <->  ( A  x.  A )  <_  (
1  x.  A ) ) )
72, 2, 3, 6syl12anc 1216 . . . 4  |-  ( A  e.  RR+  ->  ( A  <_  1  <->  ( A  x.  A )  <_  (
1  x.  A ) ) )
87biimpa 484 . . 3  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( A  x.  A )  <_  ( 1  x.  A
) )
9 rpcn 11020 . . . . 5  |-  ( A  e.  RR+  ->  A  e.  CC )
109adantr 465 . . . 4  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  A  e.  CC )
11 sqval 11946 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
1211eqcomd 2448 . . . 4  |-  ( A  e.  CC  ->  ( A  x.  A )  =  ( A ^
2 ) )
1310, 12syl 16 . . 3  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( A  x.  A )  =  ( A ^
2 ) )
149mulid2d 9425 . . . 4  |-  ( A  e.  RR+  ->  ( 1  x.  A )  =  A )
1514adantr 465 . . 3  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
1  x.  A )  =  A )
168, 13, 153brtr3d 4342 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( A ^ 2 )  <_  A )
17 oveq1 6119 . . . 4  |-  ( x  =  A  ->  (
x ^ 2 )  =  ( A ^
2 ) )
1817breq1d 4323 . . 3  |-  ( x  =  A  ->  (
( x ^ 2 )  <_  A  <->  ( A ^ 2 )  <_  A ) )
19 sqrlem1.1 . . 3  |-  S  =  { x  e.  RR+  |  ( x ^ 2 )  <_  A }
2018, 19elrab2 3140 . 2  |-  ( A  e.  S  <->  ( A  e.  RR+  /\  ( A ^ 2 )  <_  A ) )
211, 16, 20sylanbrc 664 1  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  A  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {crab 2740   class class class wbr 4313  (class class class)co 6112   supcsup 7711   CCcc 9301   RRcr 9302   0cc0 9303   1c1 9304    x. cmul 9308    < clt 9439    <_ cle 9440   2c2 10392   RR+crp 11012   ^cexp 11886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-2nd 6599  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-n0 10601  df-z 10668  df-uz 10883  df-rp 11013  df-seq 11828  df-exp 11887
This theorem is referenced by:  sqrlem3  12755  sqrlem4  12756
  Copyright terms: Public domain W3C validator