MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqr2irrlem Structured version   Unicode version

Theorem sqr2irrlem 13526
Description: Lemma for irrationality of square root of 2. The core of the proof - if  A  /  B  =  sqr ( 2 ), then 
A and  B are even, so  A  /  2 and  B  /  2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqr2irrlem.1  |-  ( ph  ->  A  e.  ZZ )
sqr2irrlem.2  |-  ( ph  ->  B  e.  NN )
sqr2irrlem.3  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
Assertion
Ref Expression
sqr2irrlem  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )

Proof of Theorem sqr2irrlem
StepHypRef Expression
1 2cn 10388 . . . . . . . . . . . 12  |-  2  e.  CC
2 sqrth 12848 . . . . . . . . . . . 12  |-  ( 2  e.  CC  ->  (
( sqr `  2
) ^ 2 )  =  2 )
31, 2ax-mp 5 . . . . . . . . . . 11  |-  ( ( sqr `  2 ) ^ 2 )  =  2
4 sqr2irrlem.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
54oveq1d 6105 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sqr `  2
) ^ 2 )  =  ( ( A  /  B ) ^
2 ) )
63, 5syl5eqr 2487 . . . . . . . . . 10  |-  ( ph  ->  2  =  ( ( A  /  B ) ^ 2 ) )
7 sqr2irrlem.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
87zcnd 10744 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
9 sqr2irrlem.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  NN )
109nncnd 10334 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
119nnne0d 10362 . . . . . . . . . . 11  |-  ( ph  ->  B  =/=  0 )
128, 10, 11sqdivd 12017 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  /  B ) ^ 2 )  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
136, 12eqtrd 2473 . . . . . . . . 9  |-  ( ph  ->  2  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
1413oveq1d 6105 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( B ^
2 ) )  x.  ( B ^ 2 ) ) )
158sqcld 12002 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
169nnsqcld 12024 . . . . . . . . . 10  |-  ( ph  ->  ( B ^ 2 )  e.  NN )
1716nncnd 10334 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
1816nnne0d 10362 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  =/=  0 )
1915, 17, 18divcan1d 10104 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
( B ^ 2 ) )  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2014, 19eqtrd 2473 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2120oveq1d 6105 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( ( A ^ 2 )  /  2 ) )
221a1i 11 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
23 2ne0 10410 . . . . . . . 8  |-  2  =/=  0
2423a1i 11 . . . . . . 7  |-  ( ph  ->  2  =/=  0 )
2517, 22, 24divcan3d 10108 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( B ^ 2 ) )
2621, 25eqtr3d 2475 . . . . 5  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  =  ( B ^ 2 ) )
2726, 16eqeltrd 2515 . . . 4  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  NN )
2827nnzd 10742 . . 3  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  ZZ )
29 zesq 11983 . . . 4  |-  ( A  e.  ZZ  ->  (
( A  /  2
)  e.  ZZ  <->  ( ( A ^ 2 )  / 
2 )  e.  ZZ ) )
307, 29syl 16 . . 3  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  <->  ( ( A ^ 2 )  /  2 )  e.  ZZ ) )
3128, 30mpbird 232 . 2  |-  ( ph  ->  ( A  /  2
)  e.  ZZ )
321sqvali 11941 . . . . . . . 8  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
3332oveq2i 6101 . . . . . . 7  |-  ( ( A ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( A ^
2 )  /  (
2  x.  2 ) )
348, 22, 24sqdivd 12017 . . . . . . 7  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( A ^ 2 )  /  ( 2 ^ 2 ) ) )
3515, 22, 22, 24, 24divdiv1d 10134 . . . . . . 7  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( A ^ 2 )  /  ( 2  x.  2 ) ) )
3633, 34, 353eqtr4a 2499 . . . . . 6  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( ( A ^ 2 )  /  2 )  /  2 ) )
3726oveq1d 6105 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( B ^ 2 )  /  2 ) )
3836, 37eqtrd 2473 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( B ^ 2 )  /  2 ) )
39 zsqcl 11932 . . . . . 6  |-  ( ( A  /  2 )  e.  ZZ  ->  (
( A  /  2
) ^ 2 )  e.  ZZ )
4031, 39syl 16 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  e.  ZZ )
4138, 40eqeltrrd 2516 . . . 4  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  ZZ )
4216nnrpd 11022 . . . . . 6  |-  ( ph  ->  ( B ^ 2 )  e.  RR+ )
4342rphalfcld 11035 . . . . 5  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  RR+ )
4443rpgt0d 11026 . . . 4  |-  ( ph  ->  0  <  ( ( B ^ 2 )  /  2 ) )
45 elnnz 10652 . . . 4  |-  ( ( ( B ^ 2 )  /  2 )  e.  NN  <->  ( (
( B ^ 2 )  /  2 )  e.  ZZ  /\  0  <  ( ( B ^
2 )  /  2
) ) )
4641, 44, 45sylanbrc 659 . . 3  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  NN )
47 nnesq 11984 . . . 4  |-  ( B  e.  NN  ->  (
( B  /  2
)  e.  NN  <->  ( ( B ^ 2 )  / 
2 )  e.  NN ) )
489, 47syl 16 . . 3  |-  ( ph  ->  ( ( B  / 
2 )  e.  NN  <->  ( ( B ^ 2 )  /  2 )  e.  NN ) )
4946, 48mpbird 232 . 2  |-  ( ph  ->  ( B  /  2
)  e.  NN )
5031, 49jca 529 1  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   CCcc 9276   0cc0 9278    x. cmul 9283    < clt 9414    / cdiv 9989   NNcn 10318   2c2 10367   ZZcz 10642   ^cexp 11861   sqrcsqr 12718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721
This theorem is referenced by:  sqr2irr  13527
  Copyright terms: Public domain W3C validator