MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqr2irrlem Unicode version

Theorem sqr2irrlem 12802
Description: Lemma for irrationality of square root of 2. The core of the proof - if  A  /  B  =  sqr ( 2 ), then 
A and  B are even, so  A  /  2 and  B  /  2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqr2irrlem.1  |-  ( ph  ->  A  e.  ZZ )
sqr2irrlem.2  |-  ( ph  ->  B  e.  NN )
sqr2irrlem.3  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
Assertion
Ref Expression
sqr2irrlem  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )

Proof of Theorem sqr2irrlem
StepHypRef Expression
1 2cn 10026 . . . . . . . . . . . 12  |-  2  e.  CC
2 sqrth 12123 . . . . . . . . . . . 12  |-  ( 2  e.  CC  ->  (
( sqr `  2
) ^ 2 )  =  2 )
31, 2ax-mp 8 . . . . . . . . . . 11  |-  ( ( sqr `  2 ) ^ 2 )  =  2
4 sqr2irrlem.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
54oveq1d 6055 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sqr `  2
) ^ 2 )  =  ( ( A  /  B ) ^
2 ) )
63, 5syl5eqr 2450 . . . . . . . . . 10  |-  ( ph  ->  2  =  ( ( A  /  B ) ^ 2 ) )
7 sqr2irrlem.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
87zcnd 10332 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
9 sqr2irrlem.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  NN )
109nncnd 9972 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
119nnne0d 10000 . . . . . . . . . . 11  |-  ( ph  ->  B  =/=  0 )
128, 10, 11sqdivd 11491 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  /  B ) ^ 2 )  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
136, 12eqtrd 2436 . . . . . . . . 9  |-  ( ph  ->  2  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
1413oveq1d 6055 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( B ^
2 ) )  x.  ( B ^ 2 ) ) )
158sqcld 11476 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
169nnsqcld 11498 . . . . . . . . . 10  |-  ( ph  ->  ( B ^ 2 )  e.  NN )
1716nncnd 9972 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
1816nnne0d 10000 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  =/=  0 )
1915, 17, 18divcan1d 9747 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
( B ^ 2 ) )  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2014, 19eqtrd 2436 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2120oveq1d 6055 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( ( A ^ 2 )  /  2 ) )
221a1i 11 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
23 2ne0 10039 . . . . . . . 8  |-  2  =/=  0
2423a1i 11 . . . . . . 7  |-  ( ph  ->  2  =/=  0 )
2517, 22, 24divcan3d 9751 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( B ^ 2 ) )
2621, 25eqtr3d 2438 . . . . 5  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  =  ( B ^ 2 ) )
2726, 16eqeltrd 2478 . . . 4  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  NN )
2827nnzd 10330 . . 3  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  ZZ )
29 zesq 11457 . . . 4  |-  ( A  e.  ZZ  ->  (
( A  /  2
)  e.  ZZ  <->  ( ( A ^ 2 )  / 
2 )  e.  ZZ ) )
307, 29syl 16 . . 3  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  <->  ( ( A ^ 2 )  /  2 )  e.  ZZ ) )
3128, 30mpbird 224 . 2  |-  ( ph  ->  ( A  /  2
)  e.  ZZ )
321sqvali 11416 . . . . . . . 8  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
3332oveq2i 6051 . . . . . . 7  |-  ( ( A ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( A ^
2 )  /  (
2  x.  2 ) )
348, 22, 24sqdivd 11491 . . . . . . 7  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( A ^ 2 )  /  ( 2 ^ 2 ) ) )
3515, 22, 22, 24, 24divdiv1d 9777 . . . . . . 7  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( A ^ 2 )  /  ( 2  x.  2 ) ) )
3633, 34, 353eqtr4a 2462 . . . . . 6  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( ( A ^ 2 )  /  2 )  /  2 ) )
3726oveq1d 6055 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( B ^ 2 )  /  2 ) )
3836, 37eqtrd 2436 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( B ^ 2 )  /  2 ) )
39 zsqcl 11407 . . . . . 6  |-  ( ( A  /  2 )  e.  ZZ  ->  (
( A  /  2
) ^ 2 )  e.  ZZ )
4031, 39syl 16 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  e.  ZZ )
4138, 40eqeltrrd 2479 . . . 4  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  ZZ )
4216nnrpd 10603 . . . . . 6  |-  ( ph  ->  ( B ^ 2 )  e.  RR+ )
4342rphalfcld 10616 . . . . 5  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  RR+ )
4443rpgt0d 10607 . . . 4  |-  ( ph  ->  0  <  ( ( B ^ 2 )  /  2 ) )
45 elnnz 10248 . . . 4  |-  ( ( ( B ^ 2 )  /  2 )  e.  NN  <->  ( (
( B ^ 2 )  /  2 )  e.  ZZ  /\  0  <  ( ( B ^
2 )  /  2
) ) )
4641, 44, 45sylanbrc 646 . . 3  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  NN )
47 nnesq 11458 . . . 4  |-  ( B  e.  NN  ->  (
( B  /  2
)  e.  NN  <->  ( ( B ^ 2 )  / 
2 )  e.  NN ) )
489, 47syl 16 . . 3  |-  ( ph  ->  ( ( B  / 
2 )  e.  NN  <->  ( ( B ^ 2 )  /  2 )  e.  NN ) )
4946, 48mpbird 224 . 2  |-  ( ph  ->  ( B  /  2
)  e.  NN )
5031, 49jca 519 1  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   0cc0 8946    x. cmul 8951    < clt 9076    / cdiv 9633   NNcn 9956   2c2 10005   ZZcz 10238   ^cexp 11337   sqrcsqr 11993
This theorem is referenced by:  sqr2irr  12803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996
  Copyright terms: Public domain W3C validator