MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqlecan Structured version   Unicode version

Theorem sqlecan 12254
Description: Cancel one factor of a square in a  <_ comparison. Unlike lemul1 10406, the common factor  A may be zero. (Contributed by NM, 17-Jan-2008.)
Assertion
Ref Expression
sqlecan  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  <_ 
( B  x.  A
)  <->  A  <_  B ) )

Proof of Theorem sqlecan
StepHypRef Expression
1 0re 9608 . . . 4  |-  0  e.  RR
2 leloe 9683 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  ( 0  <  A  \/  0  =  A )
) )
31, 2mpan 670 . . 3  |-  ( A  e.  RR  ->  (
0  <_  A  <->  ( 0  <  A  \/  0  =  A ) ) )
4 recn 9594 . . . . . . . . . . . . 13  |-  ( A  e.  RR  ->  A  e.  CC )
5 sqval 12207 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
64, 5syl 16 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  ( A ^ 2 )  =  ( A  x.  A
) )
76breq1d 4463 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
( A ^ 2 )  <_  ( B  x.  A )  <->  ( A  x.  A )  <_  ( B  x.  A )
) )
873ad2ant1 1017 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( A ^
2 )  <_  ( B  x.  A )  <->  ( A  x.  A )  <_  ( B  x.  A ) ) )
9 lemul1 10406 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( A  <_  B  <->  ( A  x.  A )  <_  ( B  x.  A ) ) )
108, 9bitr4d 256 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) )
11103exp 1195 . . . . . . . 8  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( ( A  e.  RR  /\  0  <  A )  ->  ( ( A ^ 2 )  <_ 
( B  x.  A
)  <->  A  <_  B ) ) ) )
1211exp4a 606 . . . . . . 7  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( A  e.  RR  ->  ( 0  <  A  -> 
( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) ) )
1312pm2.43a 49 . . . . . 6  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( 0  <  A  -> 
( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
1413adantrd 468 . . . . 5  |-  ( A  e.  RR  ->  (
( B  e.  RR  /\  0  <_  B )  ->  ( 0  <  A  ->  ( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
1514com23 78 . . . 4  |-  ( A  e.  RR  ->  (
0  <  A  ->  ( ( B  e.  RR  /\  0  <_  B )  ->  ( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
16 sq0 12239 . . . . . . . . . . . 12  |-  ( 0 ^ 2 )  =  0
17 0le0 10637 . . . . . . . . . . . 12  |-  0  <_  0
1816, 17eqbrtri 4472 . . . . . . . . . . 11  |-  ( 0 ^ 2 )  <_ 
0
19 recn 9594 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  B  e.  CC )
2019mul01d 9790 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( B  x.  0 )  =  0 )
2118, 20syl5breqr 4489 . . . . . . . . . 10  |-  ( B  e.  RR  ->  (
0 ^ 2 )  <_  ( B  x.  0 ) )
2221adantl 466 . . . . . . . . 9  |-  ( ( 0  =  A  /\  B  e.  RR )  ->  ( 0 ^ 2 )  <_  ( B  x.  0 ) )
23 oveq1 6302 . . . . . . . . . . 11  |-  ( 0  =  A  ->  (
0 ^ 2 )  =  ( A ^
2 ) )
24 oveq2 6303 . . . . . . . . . . 11  |-  ( 0  =  A  ->  ( B  x.  0 )  =  ( B  x.  A ) )
2523, 24breq12d 4466 . . . . . . . . . 10  |-  ( 0  =  A  ->  (
( 0 ^ 2 )  <_  ( B  x.  0 )  <->  ( A ^ 2 )  <_ 
( B  x.  A
) ) )
2625adantr 465 . . . . . . . . 9  |-  ( ( 0  =  A  /\  B  e.  RR )  ->  ( ( 0 ^ 2 )  <_  ( B  x.  0 )  <-> 
( A ^ 2 )  <_  ( B  x.  A ) ) )
2722, 26mpbid 210 . . . . . . . 8  |-  ( ( 0  =  A  /\  B  e.  RR )  ->  ( A ^ 2 )  <_  ( B  x.  A ) )
2827adantrr 716 . . . . . . 7  |-  ( ( 0  =  A  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A ^ 2 )  <_ 
( B  x.  A
) )
29 breq1 4456 . . . . . . . . 9  |-  ( 0  =  A  ->  (
0  <_  B  <->  A  <_  B ) )
3029biimpa 484 . . . . . . . 8  |-  ( ( 0  =  A  /\  0  <_  B )  ->  A  <_  B )
3130adantrl 715 . . . . . . 7  |-  ( ( 0  =  A  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  <_  B )
3228, 312thd 240 . . . . . 6  |-  ( ( 0  =  A  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  <_ 
( B  x.  A
)  <->  A  <_  B ) )
3332ex 434 . . . . 5  |-  ( 0  =  A  ->  (
( B  e.  RR  /\  0  <_  B )  ->  ( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) )
3433a1i 11 . . . 4  |-  ( A  e.  RR  ->  (
0  =  A  -> 
( ( B  e.  RR  /\  0  <_  B )  ->  (
( A ^ 2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
3515, 34jaod 380 . . 3  |-  ( A  e.  RR  ->  (
( 0  <  A  \/  0  =  A
)  ->  ( ( B  e.  RR  /\  0  <_  B )  ->  (
( A ^ 2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
363, 35sylbid 215 . 2  |-  ( A  e.  RR  ->  (
0  <_  A  ->  ( ( B  e.  RR  /\  0  <_  B )  ->  ( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
3736imp31 432 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  <_ 
( B  x.  A
)  <->  A  <_  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4453  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504    x. cmul 9509    < clt 9640    <_ cle 9641   2c2 10597   ^cexp 12146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-n0 10808  df-z 10877  df-uz 11095  df-seq 12088  df-exp 12147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator