MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgt0sr Unicode version

Theorem sqgt0sr 8608
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
sqgt0sr  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  0R  <R  ( A  .R  A ) )

Proof of Theorem sqgt0sr
StepHypRef Expression
1 0r 8582 . . . . 5  |-  0R  e.  R.
2 ltsosr 8596 . . . . . 6  |-  <R  Or  R.
3 sotrieq 4234 . . . . . 6  |-  ( ( 
<R  Or  R.  /\  ( A  e.  R.  /\  0R  e.  R. ) )  -> 
( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
42, 3mpan 654 . . . . 5  |-  ( ( A  e.  R.  /\  0R  e.  R. )  -> 
( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
51, 4mpan2 655 . . . 4  |-  ( A  e.  R.  ->  ( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
65necon2abid 2469 . . 3  |-  ( A  e.  R.  ->  (
( A  <R  0R  \/  0R  <R  A )  <->  A  =/=  0R ) )
7 m1r 8584 . . . . . . . . 9  |-  -1R  e.  R.
8 mulclsr 8586 . . . . . . . . 9  |-  ( ( A  e.  R.  /\  -1R  e.  R. )  -> 
( A  .R  -1R )  e.  R. )
97, 8mpan2 655 . . . . . . . 8  |-  ( A  e.  R.  ->  ( A  .R  -1R )  e. 
R. )
10 ltasr 8602 . . . . . . . 8  |-  ( ( A  .R  -1R )  e.  R.  ->  ( A  <R  0R  <->  ( ( A  .R  -1R )  +R  A )  <R  (
( A  .R  -1R )  +R  0R ) ) )
119, 10syl 17 . . . . . . 7  |-  ( A  e.  R.  ->  ( A  <R  0R  <->  ( ( A  .R  -1R )  +R  A )  <R  (
( A  .R  -1R )  +R  0R ) ) )
12 addcomsr 8589 . . . . . . . . 9  |-  ( ( A  .R  -1R )  +R  A )  =  ( A  +R  ( A  .R  -1R ) )
13 pn0sr 8603 . . . . . . . . 9  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
1412, 13syl5eq 2297 . . . . . . . 8  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  +R  A )  =  0R )
15 0idsr 8599 . . . . . . . . 9  |-  ( ( A  .R  -1R )  e.  R.  ->  ( ( A  .R  -1R )  +R  0R )  =  ( A  .R  -1R )
)
169, 15syl 17 . . . . . . . 8  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  +R  0R )  =  ( A  .R  -1R ) )
1714, 16breq12d 3933 . . . . . . 7  |-  ( A  e.  R.  ->  (
( ( A  .R  -1R )  +R  A
)  <R  ( ( A  .R  -1R )  +R  0R )  <->  0R  <R  ( A  .R  -1R )
) )
1811, 17bitrd 246 . . . . . 6  |-  ( A  e.  R.  ->  ( A  <R  0R  <->  0R  <R  ( A  .R  -1R )
) )
19 mulgt0sr 8607 . . . . . . 7  |-  ( ( 0R  <R  ( A  .R  -1R )  /\  0R  <R  ( A  .R  -1R ) )  ->  0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) ) )
2019anidms 629 . . . . . 6  |-  ( 0R 
<R  ( A  .R  -1R )  ->  0R  <R  (
( A  .R  -1R )  .R  ( A  .R  -1R ) ) )
2118, 20syl6bi 221 . . . . 5  |-  ( A  e.  R.  ->  ( A  <R  0R  ->  0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) ) ) )
22 mulcomsr 8591 . . . . . . . . . . . 12  |-  ( -1R 
.R  A )  =  ( A  .R  -1R )
2322oveq1i 5720 . . . . . . . . . . 11  |-  ( ( -1R  .R  A )  .R  -1R )  =  ( ( A  .R  -1R )  .R  -1R )
24 mulasssr 8592 . . . . . . . . . . 11  |-  ( ( -1R  .R  A )  .R  -1R )  =  ( -1R  .R  ( A  .R  -1R ) )
25 mulasssr 8592 . . . . . . . . . . 11  |-  ( ( A  .R  -1R )  .R  -1R )  =  ( A  .R  ( -1R 
.R  -1R ) )
2623, 24, 253eqtr3i 2281 . . . . . . . . . 10  |-  ( -1R 
.R  ( A  .R  -1R ) )  =  ( A  .R  ( -1R 
.R  -1R ) )
27 m1m1sr 8595 . . . . . . . . . . 11  |-  ( -1R 
.R  -1R )  =  1R
2827oveq2i 5721 . . . . . . . . . 10  |-  ( A  .R  ( -1R  .R  -1R ) )  =  ( A  .R  1R )
2926, 28eqtri 2273 . . . . . . . . 9  |-  ( -1R 
.R  ( A  .R  -1R ) )  =  ( A  .R  1R )
3029oveq2i 5721 . . . . . . . 8  |-  ( A  .R  ( -1R  .R  ( A  .R  -1R )
) )  =  ( A  .R  ( A  .R  1R ) )
31 mulasssr 8592 . . . . . . . 8  |-  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( A  .R  ( -1R 
.R  ( A  .R  -1R ) ) )
32 mulasssr 8592 . . . . . . . 8  |-  ( ( A  .R  A )  .R  1R )  =  ( A  .R  ( A  .R  1R ) )
3330, 31, 323eqtr4i 2283 . . . . . . 7  |-  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( ( A  .R  A
)  .R  1R )
34 mulclsr 8586 . . . . . . . . 9  |-  ( ( A  e.  R.  /\  A  e.  R. )  ->  ( A  .R  A
)  e.  R. )
35 1idsr 8600 . . . . . . . . 9  |-  ( ( A  .R  A )  e.  R.  ->  (
( A  .R  A
)  .R  1R )  =  ( A  .R  A ) )
3634, 35syl 17 . . . . . . . 8  |-  ( ( A  e.  R.  /\  A  e.  R. )  ->  ( ( A  .R  A )  .R  1R )  =  ( A  .R  A ) )
3736anidms 629 . . . . . . 7  |-  ( A  e.  R.  ->  (
( A  .R  A
)  .R  1R )  =  ( A  .R  A ) )
3833, 37syl5eq 2297 . . . . . 6  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( A  .R  A ) )
3938breq2d 3932 . . . . 5  |-  ( A  e.  R.  ->  ( 0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R )
)  <->  0R  <R  ( A  .R  A ) ) )
4021, 39sylibd 207 . . . 4  |-  ( A  e.  R.  ->  ( A  <R  0R  ->  0R  <R  ( A  .R  A
) ) )
41 mulgt0sr 8607 . . . . . 6  |-  ( ( 0R  <R  A  /\  0R  <R  A )  ->  0R  <R  ( A  .R  A ) )
4241anidms 629 . . . . 5  |-  ( 0R 
<R  A  ->  0R  <R  ( A  .R  A ) )
4342a1i 12 . . . 4  |-  ( A  e.  R.  ->  ( 0R  <R  A  ->  0R  <R  ( A  .R  A
) ) )
4440, 43jaod 371 . . 3  |-  ( A  e.  R.  ->  (
( A  <R  0R  \/  0R  <R  A )  ->  0R  <R  ( A  .R  A ) ) )
456, 44sylbird 228 . 2  |-  ( A  e.  R.  ->  ( A  =/=  0R  ->  0R  <R  ( A  .R  A
) ) )
4645imp 420 1  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  0R  <R  ( A  .R  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920    Or wor 4206  (class class class)co 5710   R.cnr 8369   0Rc0r 8370   1Rc1r 8371   -1Rcm1r 8372    +R cplr 8373    .R cmr 8374    <R cltr 8375
This theorem is referenced by:  recexsr  8609
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-omul 6370  df-er 6546  df-ec 6548  df-qs 6552  df-ni 8376  df-pli 8377  df-mi 8378  df-lti 8379  df-plpq 8412  df-mpq 8413  df-ltpq 8414  df-enq 8415  df-nq 8416  df-erq 8417  df-plq 8418  df-mq 8419  df-1nq 8420  df-rq 8421  df-ltnq 8422  df-np 8485  df-1p 8486  df-plp 8487  df-mp 8488  df-ltp 8489  df-plpr 8559  df-mpr 8560  df-enr 8561  df-nr 8562  df-plr 8563  df-mr 8564  df-ltr 8565  df-0r 8566  df-1r 8567  df-m1r 8568
  Copyright terms: Public domain W3C validator