MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgt0sr Structured version   Unicode version

Theorem sqgt0sr 9512
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
sqgt0sr  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  0R  <R  ( A  .R  A ) )

Proof of Theorem sqgt0sr
StepHypRef Expression
1 0r 9486 . . . . 5  |-  0R  e.  R.
2 ltsosr 9500 . . . . . 6  |-  <R  Or  R.
3 sotrieq 4770 . . . . . 6  |-  ( ( 
<R  Or  R.  /\  ( A  e.  R.  /\  0R  e.  R. ) )  -> 
( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
42, 3mpan 668 . . . . 5  |-  ( ( A  e.  R.  /\  0R  e.  R. )  -> 
( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
51, 4mpan2 669 . . . 4  |-  ( A  e.  R.  ->  ( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
65necon2abid 2657 . . 3  |-  ( A  e.  R.  ->  (
( A  <R  0R  \/  0R  <R  A )  <->  A  =/=  0R ) )
7 m1r 9488 . . . . . . . . 9  |-  -1R  e.  R.
8 mulclsr 9490 . . . . . . . . 9  |-  ( ( A  e.  R.  /\  -1R  e.  R. )  -> 
( A  .R  -1R )  e.  R. )
97, 8mpan2 669 . . . . . . . 8  |-  ( A  e.  R.  ->  ( A  .R  -1R )  e. 
R. )
10 ltasr 9506 . . . . . . . 8  |-  ( ( A  .R  -1R )  e.  R.  ->  ( A  <R  0R  <->  ( ( A  .R  -1R )  +R  A )  <R  (
( A  .R  -1R )  +R  0R ) ) )
119, 10syl 17 . . . . . . 7  |-  ( A  e.  R.  ->  ( A  <R  0R  <->  ( ( A  .R  -1R )  +R  A )  <R  (
( A  .R  -1R )  +R  0R ) ) )
12 addcomsr 9493 . . . . . . . . 9  |-  ( ( A  .R  -1R )  +R  A )  =  ( A  +R  ( A  .R  -1R ) )
13 pn0sr 9507 . . . . . . . . 9  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
1412, 13syl5eq 2455 . . . . . . . 8  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  +R  A )  =  0R )
15 0idsr 9503 . . . . . . . . 9  |-  ( ( A  .R  -1R )  e.  R.  ->  ( ( A  .R  -1R )  +R  0R )  =  ( A  .R  -1R )
)
169, 15syl 17 . . . . . . . 8  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  +R  0R )  =  ( A  .R  -1R ) )
1714, 16breq12d 4407 . . . . . . 7  |-  ( A  e.  R.  ->  (
( ( A  .R  -1R )  +R  A
)  <R  ( ( A  .R  -1R )  +R  0R )  <->  0R  <R  ( A  .R  -1R )
) )
1811, 17bitrd 253 . . . . . 6  |-  ( A  e.  R.  ->  ( A  <R  0R  <->  0R  <R  ( A  .R  -1R )
) )
19 mulgt0sr 9511 . . . . . . 7  |-  ( ( 0R  <R  ( A  .R  -1R )  /\  0R  <R  ( A  .R  -1R ) )  ->  0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) ) )
2019anidms 643 . . . . . 6  |-  ( 0R 
<R  ( A  .R  -1R )  ->  0R  <R  (
( A  .R  -1R )  .R  ( A  .R  -1R ) ) )
2118, 20syl6bi 228 . . . . 5  |-  ( A  e.  R.  ->  ( A  <R  0R  ->  0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) ) ) )
22 mulcomsr 9495 . . . . . . . . . . . 12  |-  ( -1R 
.R  A )  =  ( A  .R  -1R )
2322oveq1i 6287 . . . . . . . . . . 11  |-  ( ( -1R  .R  A )  .R  -1R )  =  ( ( A  .R  -1R )  .R  -1R )
24 mulasssr 9496 . . . . . . . . . . 11  |-  ( ( -1R  .R  A )  .R  -1R )  =  ( -1R  .R  ( A  .R  -1R ) )
25 mulasssr 9496 . . . . . . . . . . 11  |-  ( ( A  .R  -1R )  .R  -1R )  =  ( A  .R  ( -1R 
.R  -1R ) )
2623, 24, 253eqtr3i 2439 . . . . . . . . . 10  |-  ( -1R 
.R  ( A  .R  -1R ) )  =  ( A  .R  ( -1R 
.R  -1R ) )
27 m1m1sr 9499 . . . . . . . . . . 11  |-  ( -1R 
.R  -1R )  =  1R
2827oveq2i 6288 . . . . . . . . . 10  |-  ( A  .R  ( -1R  .R  -1R ) )  =  ( A  .R  1R )
2926, 28eqtri 2431 . . . . . . . . 9  |-  ( -1R 
.R  ( A  .R  -1R ) )  =  ( A  .R  1R )
3029oveq2i 6288 . . . . . . . 8  |-  ( A  .R  ( -1R  .R  ( A  .R  -1R )
) )  =  ( A  .R  ( A  .R  1R ) )
31 mulasssr 9496 . . . . . . . 8  |-  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( A  .R  ( -1R 
.R  ( A  .R  -1R ) ) )
32 mulasssr 9496 . . . . . . . 8  |-  ( ( A  .R  A )  .R  1R )  =  ( A  .R  ( A  .R  1R ) )
3330, 31, 323eqtr4i 2441 . . . . . . 7  |-  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( ( A  .R  A
)  .R  1R )
34 mulclsr 9490 . . . . . . . . 9  |-  ( ( A  e.  R.  /\  A  e.  R. )  ->  ( A  .R  A
)  e.  R. )
35 1idsr 9504 . . . . . . . . 9  |-  ( ( A  .R  A )  e.  R.  ->  (
( A  .R  A
)  .R  1R )  =  ( A  .R  A ) )
3634, 35syl 17 . . . . . . . 8  |-  ( ( A  e.  R.  /\  A  e.  R. )  ->  ( ( A  .R  A )  .R  1R )  =  ( A  .R  A ) )
3736anidms 643 . . . . . . 7  |-  ( A  e.  R.  ->  (
( A  .R  A
)  .R  1R )  =  ( A  .R  A ) )
3833, 37syl5eq 2455 . . . . . 6  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( A  .R  A ) )
3938breq2d 4406 . . . . 5  |-  ( A  e.  R.  ->  ( 0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R )
)  <->  0R  <R  ( A  .R  A ) ) )
4021, 39sylibd 214 . . . 4  |-  ( A  e.  R.  ->  ( A  <R  0R  ->  0R  <R  ( A  .R  A
) ) )
41 mulgt0sr 9511 . . . . . 6  |-  ( ( 0R  <R  A  /\  0R  <R  A )  ->  0R  <R  ( A  .R  A ) )
4241anidms 643 . . . . 5  |-  ( 0R 
<R  A  ->  0R  <R  ( A  .R  A ) )
4342a1i 11 . . . 4  |-  ( A  e.  R.  ->  ( 0R  <R  A  ->  0R  <R  ( A  .R  A
) ) )
4440, 43jaod 378 . . 3  |-  ( A  e.  R.  ->  (
( A  <R  0R  \/  0R  <R  A )  ->  0R  <R  ( A  .R  A ) ) )
456, 44sylbird 235 . 2  |-  ( A  e.  R.  ->  ( A  =/=  0R  ->  0R  <R  ( A  .R  A
) ) )
4645imp 427 1  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  0R  <R  ( A  .R  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4394    Or wor 4742  (class class class)co 6277   R.cnr 9272   0Rc0r 9273   1Rc1r 9274   -1Rcm1r 9275    +R cplr 9276    .R cmr 9277    <R cltr 9278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-omul 7171  df-er 7347  df-ec 7349  df-qs 7353  df-ni 9279  df-pli 9280  df-mi 9281  df-lti 9282  df-plpq 9315  df-mpq 9316  df-ltpq 9317  df-enq 9318  df-nq 9319  df-erq 9320  df-plq 9321  df-mq 9322  df-1nq 9323  df-rq 9324  df-ltnq 9325  df-np 9388  df-1p 9389  df-plp 9390  df-mp 9391  df-ltp 9392  df-enr 9462  df-nr 9463  df-plr 9464  df-mr 9465  df-ltr 9466  df-0r 9467  df-1r 9468  df-m1r 9469
This theorem is referenced by:  recexsr  9513
  Copyright terms: Public domain W3C validator