MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgt0d Structured version   Unicode version

Theorem sqgt0d 12341
Description: The square of a nonzero real is positive. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
resqcld.1  |-  ( ph  ->  A  e.  RR )
sqgt0d.2  |-  ( ph  ->  A  =/=  0 )
Assertion
Ref Expression
sqgt0d  |-  ( ph  ->  0  <  ( A ^ 2 ) )

Proof of Theorem sqgt0d
StepHypRef Expression
1 resqcld.1 . 2  |-  ( ph  ->  A  e.  RR )
2 sqgt0d.2 . 2  |-  ( ph  ->  A  =/=  0 )
3 sqgt0 12239 . 2  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
0  <  ( A ^ 2 ) )
41, 2, 3syl2anc 661 1  |-  ( ph  ->  0  <  ( A ^ 2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1819    =/= wne 2652   class class class wbr 4456  (class class class)co 6296   RRcr 9508   0cc0 9509    < clt 9645   2c2 10606   ^cexp 12169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-seq 12111  df-exp 12170
This theorem is referenced by:  pythagtriplem10  14356  tangtx  23024  cxpsqrt  23210  hlipgt0  25957  pellexlem2  30970  stirlinglem10  32068
  Copyright terms: Public domain W3C validator