MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqori Structured version   Unicode version

Theorem sqeqori 12088
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.)
Hypotheses
Ref Expression
binom2.1  |-  A  e.  CC
binom2.2  |-  B  e.  CC
Assertion
Ref Expression
sqeqori  |-  ( ( A ^ 2 )  =  ( B ^
2 )  <->  ( A  =  B  \/  A  =  -u B ) )

Proof of Theorem sqeqori
StepHypRef Expression
1 binom2.1 . . . . 5  |-  A  e.  CC
2 binom2.2 . . . . 5  |-  B  e.  CC
31, 2subsqi 12087 . . . 4  |-  ( ( A ^ 2 )  -  ( B ^
2 ) )  =  ( ( A  +  B )  x.  ( A  -  B )
)
43eqeq1i 2458 . . 3  |-  ( ( ( A ^ 2 )  -  ( B ^ 2 ) )  =  0  <->  ( ( A  +  B )  x.  ( A  -  B
) )  =  0 )
51sqcli 12056 . . . 4  |-  ( A ^ 2 )  e.  CC
62sqcli 12056 . . . 4  |-  ( B ^ 2 )  e.  CC
75, 6subeq0i 9792 . . 3  |-  ( ( ( A ^ 2 )  -  ( B ^ 2 ) )  =  0  <->  ( A ^ 2 )  =  ( B ^ 2 ) )
81, 2addcli 9494 . . . 4  |-  ( A  +  B )  e.  CC
91, 2subcli 9788 . . . 4  |-  ( A  -  B )  e.  CC
108, 9mul0ori 10088 . . 3  |-  ( ( ( A  +  B
)  x.  ( A  -  B ) )  =  0  <->  ( ( A  +  B )  =  0  \/  ( A  -  B )  =  0 ) )
114, 7, 103bitr3i 275 . 2  |-  ( ( A ^ 2 )  =  ( B ^
2 )  <->  ( ( A  +  B )  =  0  \/  ( A  -  B )  =  0 ) )
12 orcom 387 . 2  |-  ( ( ( A  +  B
)  =  0  \/  ( A  -  B
)  =  0 )  <-> 
( ( A  -  B )  =  0  \/  ( A  +  B )  =  0 ) )
131, 2subeq0i 9792 . . 3  |-  ( ( A  -  B )  =  0  <->  A  =  B )
141, 2subnegi 9791 . . . . 5  |-  ( A  -  -u B )  =  ( A  +  B
)
1514eqeq1i 2458 . . . 4  |-  ( ( A  -  -u B
)  =  0  <->  ( A  +  B )  =  0 )
162negcli 9780 . . . . 5  |-  -u B  e.  CC
171, 16subeq0i 9792 . . . 4  |-  ( ( A  -  -u B
)  =  0  <->  A  =  -u B )
1815, 17bitr3i 251 . . 3  |-  ( ( A  +  B )  =  0  <->  A  =  -u B )
1913, 18orbi12i 521 . 2  |-  ( ( ( A  -  B
)  =  0  \/  ( A  +  B
)  =  0 )  <-> 
( A  =  B  \/  A  =  -u B ) )
2011, 12, 193bitri 271 1  |-  ( ( A ^ 2 )  =  ( B ^
2 )  <->  ( A  =  B  \/  A  =  -u B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    \/ wo 368    = wceq 1370    e. wcel 1758  (class class class)co 6193   CCcc 9384   0cc0 9386    + caddc 9389    x. cmul 9391    - cmin 9699   -ucneg 9700   2c2 10475   ^cexp 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-2nd 6681  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-2 10484  df-n0 10684  df-z 10751  df-uz 10966  df-seq 11917  df-exp 11976
This theorem is referenced by:  subsq0i  12089  sqeqor  12090  sinhalfpilem  22051
  Copyright terms: Public domain W3C validator