MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sq2 Structured version   Unicode version

Theorem sq2 12309
Description: The square of 2 is 4. (Contributed by NM, 22-Aug-1999.)
Assertion
Ref Expression
sq2  |-  ( 2 ^ 2 )  =  4

Proof of Theorem sq2
StepHypRef Expression
1 2cn 10647 . . 3  |-  2  e.  CC
21sqvali 12292 . 2  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
3 2t2e4 10726 . 2  |-  ( 2  x.  2 )  =  4
42, 3eqtri 2431 1  |-  ( 2 ^ 2 )  =  4
Colors of variables: wff setvar class
Syntax hints:    = wceq 1405  (class class class)co 6278    x. cmul 9527   2c2 10626   4c4 10628   ^cexp 12210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-n0 10837  df-z 10906  df-uz 11128  df-seq 12152  df-exp 12211
This theorem is referenced by:  cu2  12311  faclbnd2  12413  sqrt4  13255  amgm2  13351  ef01bndlem  14128  cos2bnd  14132  pythagtriplem1  14549  4sqlem12  14683  2exp4  14780  lt6abl  17221  csbren  22118  minveclem2  22133  sincos6thpi  23200  heron  23494  quad2  23495  dcubic2  23500  mcubic  23503  dquartlem2  23508  dquart  23509  quart1  23512  quartlem1  23513  chtublem  23867  chtub  23868  bclbnd  23936  bposlem6  23945  bposlem8  23947  chebbnd1lem3  24037  chebbnd1  24038  ipidsq  26037  minvecolem2  26205  normpar2i  26487  sqsscirc1  28343  wallispi2lem1  37221  stirlinglem3  37226  stirlinglem10  37233  exple2lt6  38468
  Copyright terms: Public domain W3C validator