MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthispth Structured version   Visualization version   Unicode version

Theorem spthispth 25382
Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.)
Assertion
Ref Expression
spthispth  |-  ( F ( V SPaths  E ) P  ->  F ( V Paths  E ) P )

Proof of Theorem spthispth
Dummy variables  x  e  f  p  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-spth 25318 . . 3  |- SPaths  =  ( v  e.  _V , 
e  e.  _V  |->  {
<. f ,  p >.  |  ( f ( v Trails 
e ) p  /\  Fun  `' p ) } )
21brovmpt2ex 6988 . 2  |-  ( F ( V SPaths  E ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
3 simprl 772 . . . . 5  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  ( F ( V Trails  E
) P  /\  Fun  `' P ) )  ->  F ( V Trails  E
) P )
4 funres11 5661 . . . . . . 7  |-  ( Fun  `' P  ->  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) )
54adantl 473 . . . . . 6  |-  ( ( F ( V Trails  E
) P  /\  Fun  `' P )  ->  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) ) )
65adantl 473 . . . . 5  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  ( F ( V Trails  E
) P  /\  Fun  `' P ) )  ->  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) )
7 trliswlk 25348 . . . . . . . . . 10  |-  ( F ( V Trails  E ) P  ->  F ( V Walks  E ) P )
87a1i 11 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Trails  E ) P  ->  F ( V Walks 
E ) P ) )
9 2mwlk 25328 . . . . . . . . 9  |-  ( F ( V Walks  E ) P  ->  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V ) )
108, 9syl6 33 . . . . . . . 8  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Trails  E ) P  ->  ( F  e. Word  dom  E  /\  P :
( 0 ... ( # `
 F ) ) --> V ) ) )
1110imp 436 . . . . . . 7  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  F ( V Trails  E
) P )  -> 
( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F ) ) --> V ) )
12 imain 5669 . . . . . . . . . . 11  |-  ( Fun  `' P  ->  ( P
" ( { 0 ,  ( # `  F
) }  i^i  (
1..^ ( # `  F
) ) ) )  =  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) ) )
1312adantl 473 . . . . . . . . . 10  |-  ( ( F  e. Word  dom  E  /\  Fun  `' P )  ->  ( P "
( { 0 ,  ( # `  F
) }  i^i  (
1..^ ( # `  F
) ) ) )  =  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) ) )
14 0lt1 10157 . . . . . . . . . . . . . . . . . 18  |-  0  <  1
15 0re 9661 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
16 1re 9660 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
1715, 16ltnlei 9773 . . . . . . . . . . . . . . . . . 18  |-  ( 0  <  1  <->  -.  1  <_  0 )
1814, 17mpbi 213 . . . . . . . . . . . . . . . . 17  |-  -.  1  <_  0
19 elfzole1 11955 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  ( 1..^ (
# `  F )
)  ->  1  <_  0 )
2018, 19mto 181 . . . . . . . . . . . . . . . 16  |-  -.  0  e.  ( 1..^ ( # `  F ) )
2120a1i 11 . . . . . . . . . . . . . . 15  |-  ( F  e. Word  dom  E  ->  -.  0  e.  ( 1..^ ( # `  F
) ) )
22 wrdfin 12736 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e. Word  dom  E  ->  F  e.  Fin )
23 hashcl 12576 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  Fin  ->  ( # `
 F )  e. 
NN0 )
2423nn0red 10950 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  Fin  ->  ( # `
 F )  e.  RR )
2522, 24syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( F  e. Word  dom  E  ->  (
# `  F )  e.  RR )
2625ltnrd 9786 . . . . . . . . . . . . . . . . 17  |-  ( F  e. Word  dom  E  ->  -.  ( # `  F
)  <  ( # `  F
) )
2726intn3an3d 1409 . . . . . . . . . . . . . . . 16  |-  ( F  e. Word  dom  E  ->  -.  ( ( # `  F
)  e.  ( ZZ>= ` 
1 )  /\  ( # `
 F )  e.  ZZ  /\  ( # `  F )  <  ( # `
 F ) ) )
28 elfzo2 11950 . . . . . . . . . . . . . . . 16  |-  ( (
# `  F )  e.  ( 1..^ ( # `  F ) )  <->  ( ( # `
 F )  e.  ( ZZ>= `  1 )  /\  ( # `  F
)  e.  ZZ  /\  ( # `  F )  <  ( # `  F
) ) )
2927, 28sylnibr 312 . . . . . . . . . . . . . . 15  |-  ( F  e. Word  dom  E  ->  -.  ( # `  F
)  e.  ( 1..^ ( # `  F
) ) )
30 fvex 5889 . . . . . . . . . . . . . . . 16  |-  ( # `  F )  e.  _V
31 eleq1 2537 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  0  ->  (
x  e.  ( 1..^ ( # `  F
) )  <->  0  e.  ( 1..^ ( # `  F
) ) ) )
3231notbid 301 . . . . . . . . . . . . . . . . 17  |-  ( x  =  0  ->  ( -.  x  e.  (
1..^ ( # `  F
) )  <->  -.  0  e.  ( 1..^ ( # `  F ) ) ) )
33 eleq1 2537 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( # `  F
)  ->  ( x  e.  ( 1..^ ( # `  F ) )  <->  ( # `  F
)  e.  ( 1..^ ( # `  F
) ) ) )
3433notbid 301 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( # `  F
)  ->  ( -.  x  e.  ( 1..^ ( # `  F
) )  <->  -.  ( # `
 F )  e.  ( 1..^ ( # `  F ) ) ) )
3532, 34ralprg 4012 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  ( # `  F )  e.  _V )  -> 
( A. x  e. 
{ 0 ,  (
# `  F ) }  -.  x  e.  ( 1..^ ( # `  F
) )  <->  ( -.  0  e.  ( 1..^ ( # `  F
) )  /\  -.  ( # `  F )  e.  ( 1..^ (
# `  F )
) ) ) )
3615, 30, 35mp2an 686 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  { 0 ,  ( # `  F
) }  -.  x  e.  ( 1..^ ( # `  F ) )  <->  ( -.  0  e.  ( 1..^ ( # `  F
) )  /\  -.  ( # `  F )  e.  ( 1..^ (
# `  F )
) ) )
3721, 29, 36sylanbrc 677 . . . . . . . . . . . . . 14  |-  ( F  e. Word  dom  E  ->  A. x  e.  { 0 ,  ( # `  F
) }  -.  x  e.  ( 1..^ ( # `  F ) ) )
38 disj 3809 . . . . . . . . . . . . . 14  |-  ( ( { 0 ,  (
# `  F ) }  i^i  ( 1..^ (
# `  F )
) )  =  (/)  <->  A. x  e.  { 0 ,  ( # `  F
) }  -.  x  e.  ( 1..^ ( # `  F ) ) )
3937, 38sylibr 217 . . . . . . . . . . . . 13  |-  ( F  e. Word  dom  E  ->  ( { 0 ,  (
# `  F ) }  i^i  ( 1..^ (
# `  F )
) )  =  (/) )
4039imaeq2d 5174 . . . . . . . . . . . 12  |-  ( F  e. Word  dom  E  ->  ( P " ( { 0 ,  ( # `  F ) }  i^i  ( 1..^ ( # `  F
) ) ) )  =  ( P " (/) ) )
41 ima0 5189 . . . . . . . . . . . 12  |-  ( P
" (/) )  =  (/)
4240, 41syl6eq 2521 . . . . . . . . . . 11  |-  ( F  e. Word  dom  E  ->  ( P " ( { 0 ,  ( # `  F ) }  i^i  ( 1..^ ( # `  F
) ) ) )  =  (/) )
4342adantr 472 . . . . . . . . . 10  |-  ( ( F  e. Word  dom  E  /\  Fun  `' P )  ->  ( P "
( { 0 ,  ( # `  F
) }  i^i  (
1..^ ( # `  F
) ) ) )  =  (/) )
4413, 43eqtr3d 2507 . . . . . . . . 9  |-  ( ( F  e. Word  dom  E  /\  Fun  `' P )  ->  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )
4544ex 441 . . . . . . . 8  |-  ( F  e. Word  dom  E  ->  ( Fun  `' P  -> 
( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) )
4645adantr 472 . . . . . . 7  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V )  ->  ( Fun  `' P  ->  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) ) )
4711, 46syl 17 . . . . . 6  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  F ( V Trails  E
) P )  -> 
( Fun  `' P  ->  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) )
4847impr 631 . . . . 5  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  ( F ( V Trails  E
) P  /\  Fun  `' P ) )  -> 
( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )
493, 6, 483jca 1210 . . . 4  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  ( F ( V Trails  E
) P  /\  Fun  `' P ) )  -> 
( F ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) )
5049ex 441 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( ( F ( V Trails  E
) P  /\  Fun  `' P )  ->  ( F ( V Trails  E
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) ) )
51 isspth 25378 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V SPaths  E ) P 
<->  ( F ( V Trails  E ) P  /\  Fun  `' P ) ) )
52 ispth 25377 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Paths  E ) P 
<->  ( F ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) ) )
5350, 51, 523imtr4d 276 . 2  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V SPaths  E ) P  ->  F ( V Paths 
E ) P ) )
542, 53mpcom 36 1  |-  ( F ( V SPaths  E ) P  ->  F ( V Paths  E ) P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031    i^i cin 3389   (/)c0 3722   {cpr 3961   class class class wbr 4395   `'ccnv 4838   dom cdm 4839    |` cres 4841   "cima 4842   Fun wfun 5583   -->wf 5585   ` cfv 5589  (class class class)co 6308   Fincfn 7587   RRcr 9556   0cc0 9557   1c1 9558    < clt 9693    <_ cle 9694   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810  ..^cfzo 11942   #chash 12553  Word cword 12703   Walks cwalk 25305   Trails ctrail 25306   Paths cpath 25307   SPaths cspath 25308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-fzo 11943  df-hash 12554  df-word 12711  df-wlk 25315  df-trail 25316  df-pth 25317  df-spth 25318
This theorem is referenced by:  spthon  25391  isspthonpth  25393  el2spthonot  25677  usg2wotspth  25691  usgra2pthspth  40173  spthdifv  40174  usgra2pth  40176
  Copyright terms: Public domain W3C validator