MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthispth Structured version   Unicode version

Theorem spthispth 24553
Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.)
Assertion
Ref Expression
spthispth  |-  ( F ( V SPaths  E ) P  ->  F ( V Paths  E ) P )

Proof of Theorem spthispth
Dummy variables  x  e  f  p  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-spth 24489 . . 3  |- SPaths  =  ( v  e.  _V , 
e  e.  _V  |->  {
<. f ,  p >.  |  ( f ( v Trails 
e ) p  /\  Fun  `' p ) } )
21brovmpt2ex 6953 . 2  |-  ( F ( V SPaths  E ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
3 simprl 756 . . . . 5  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  ( F ( V Trails  E
) P  /\  Fun  `' P ) )  ->  F ( V Trails  E
) P )
4 funres11 5646 . . . . . . 7  |-  ( Fun  `' P  ->  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) )
54adantl 466 . . . . . 6  |-  ( ( F ( V Trails  E
) P  /\  Fun  `' P )  ->  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) ) )
65adantl 466 . . . . 5  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  ( F ( V Trails  E
) P  /\  Fun  `' P ) )  ->  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) )
7 trliswlk 24519 . . . . . . . . . 10  |-  ( F ( V Trails  E ) P  ->  F ( V Walks  E ) P )
87a1i 11 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Trails  E ) P  ->  F ( V Walks 
E ) P ) )
9 2mwlk 24499 . . . . . . . . 9  |-  ( F ( V Walks  E ) P  ->  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V ) )
108, 9syl6 33 . . . . . . . 8  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Trails  E ) P  ->  ( F  e. Word  dom  E  /\  P :
( 0 ... ( # `
 F ) ) --> V ) ) )
1110imp 429 . . . . . . 7  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  F ( V Trails  E
) P )  -> 
( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F ) ) --> V ) )
12 imain 5654 . . . . . . . . . . 11  |-  ( Fun  `' P  ->  ( P
" ( { 0 ,  ( # `  F
) }  i^i  (
1..^ ( # `  F
) ) ) )  =  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) ) )
1312adantl 466 . . . . . . . . . 10  |-  ( ( F  e. Word  dom  E  /\  Fun  `' P )  ->  ( P "
( { 0 ,  ( # `  F
) }  i^i  (
1..^ ( # `  F
) ) ) )  =  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) ) )
14 0lt1 10082 . . . . . . . . . . . . . . . . . 18  |-  0  <  1
15 0re 9599 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
16 1re 9598 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
1715, 16ltnlei 9708 . . . . . . . . . . . . . . . . . 18  |-  ( 0  <  1  <->  -.  1  <_  0 )
1814, 17mpbi 208 . . . . . . . . . . . . . . . . 17  |-  -.  1  <_  0
19 elfzole1 11818 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  ( 1..^ (
# `  F )
)  ->  1  <_  0 )
2018, 19mto 176 . . . . . . . . . . . . . . . 16  |-  -.  0  e.  ( 1..^ ( # `  F ) )
2120a1i 11 . . . . . . . . . . . . . . 15  |-  ( F  e. Word  dom  E  ->  -.  0  e.  ( 1..^ ( # `  F
) ) )
22 wrdfin 12543 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e. Word  dom  E  ->  F  e.  Fin )
23 hashcl 12410 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  Fin  ->  ( # `
 F )  e. 
NN0 )
2423nn0red 10860 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  Fin  ->  ( # `
 F )  e.  RR )
2522, 24syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( F  e. Word  dom  E  ->  (
# `  F )  e.  RR )
2625ltnrd 9722 . . . . . . . . . . . . . . . . 17  |-  ( F  e. Word  dom  E  ->  -.  ( # `  F
)  <  ( # `  F
) )
2726intn3an3d 1341 . . . . . . . . . . . . . . . 16  |-  ( F  e. Word  dom  E  ->  -.  ( ( # `  F
)  e.  ( ZZ>= ` 
1 )  /\  ( # `
 F )  e.  ZZ  /\  ( # `  F )  <  ( # `
 F ) ) )
28 elfzo2 11814 . . . . . . . . . . . . . . . 16  |-  ( (
# `  F )  e.  ( 1..^ ( # `  F ) )  <->  ( ( # `
 F )  e.  ( ZZ>= `  1 )  /\  ( # `  F
)  e.  ZZ  /\  ( # `  F )  <  ( # `  F
) ) )
2927, 28sylnibr 305 . . . . . . . . . . . . . . 15  |-  ( F  e. Word  dom  E  ->  -.  ( # `  F
)  e.  ( 1..^ ( # `  F
) ) )
30 fvex 5866 . . . . . . . . . . . . . . . 16  |-  ( # `  F )  e.  _V
31 eleq1 2515 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  0  ->  (
x  e.  ( 1..^ ( # `  F
) )  <->  0  e.  ( 1..^ ( # `  F
) ) ) )
3231notbid 294 . . . . . . . . . . . . . . . . 17  |-  ( x  =  0  ->  ( -.  x  e.  (
1..^ ( # `  F
) )  <->  -.  0  e.  ( 1..^ ( # `  F ) ) ) )
33 eleq1 2515 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( # `  F
)  ->  ( x  e.  ( 1..^ ( # `  F ) )  <->  ( # `  F
)  e.  ( 1..^ ( # `  F
) ) ) )
3433notbid 294 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( # `  F
)  ->  ( -.  x  e.  ( 1..^ ( # `  F
) )  <->  -.  ( # `
 F )  e.  ( 1..^ ( # `  F ) ) ) )
3532, 34ralprg 4063 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  ( # `  F )  e.  _V )  -> 
( A. x  e. 
{ 0 ,  (
# `  F ) }  -.  x  e.  ( 1..^ ( # `  F
) )  <->  ( -.  0  e.  ( 1..^ ( # `  F
) )  /\  -.  ( # `  F )  e.  ( 1..^ (
# `  F )
) ) ) )
3615, 30, 35mp2an 672 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  { 0 ,  ( # `  F
) }  -.  x  e.  ( 1..^ ( # `  F ) )  <->  ( -.  0  e.  ( 1..^ ( # `  F
) )  /\  -.  ( # `  F )  e.  ( 1..^ (
# `  F )
) ) )
3721, 29, 36sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( F  e. Word  dom  E  ->  A. x  e.  { 0 ,  ( # `  F
) }  -.  x  e.  ( 1..^ ( # `  F ) ) )
38 disj 3853 . . . . . . . . . . . . . 14  |-  ( ( { 0 ,  (
# `  F ) }  i^i  ( 1..^ (
# `  F )
) )  =  (/)  <->  A. x  e.  { 0 ,  ( # `  F
) }  -.  x  e.  ( 1..^ ( # `  F ) ) )
3937, 38sylibr 212 . . . . . . . . . . . . 13  |-  ( F  e. Word  dom  E  ->  ( { 0 ,  (
# `  F ) }  i^i  ( 1..^ (
# `  F )
) )  =  (/) )
4039imaeq2d 5327 . . . . . . . . . . . 12  |-  ( F  e. Word  dom  E  ->  ( P " ( { 0 ,  ( # `  F ) }  i^i  ( 1..^ ( # `  F
) ) ) )  =  ( P " (/) ) )
41 ima0 5342 . . . . . . . . . . . 12  |-  ( P
" (/) )  =  (/)
4240, 41syl6eq 2500 . . . . . . . . . . 11  |-  ( F  e. Word  dom  E  ->  ( P " ( { 0 ,  ( # `  F ) }  i^i  ( 1..^ ( # `  F
) ) ) )  =  (/) )
4342adantr 465 . . . . . . . . . 10  |-  ( ( F  e. Word  dom  E  /\  Fun  `' P )  ->  ( P "
( { 0 ,  ( # `  F
) }  i^i  (
1..^ ( # `  F
) ) ) )  =  (/) )
4413, 43eqtr3d 2486 . . . . . . . . 9  |-  ( ( F  e. Word  dom  E  /\  Fun  `' P )  ->  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )
4544ex 434 . . . . . . . 8  |-  ( F  e. Word  dom  E  ->  ( Fun  `' P  -> 
( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) )
4645adantr 465 . . . . . . 7  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V )  ->  ( Fun  `' P  ->  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) ) )
4711, 46syl 16 . . . . . 6  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  F ( V Trails  E
) P )  -> 
( Fun  `' P  ->  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) )
4847impr 619 . . . . 5  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  ( F ( V Trails  E
) P  /\  Fun  `' P ) )  -> 
( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )
493, 6, 483jca 1177 . . . 4  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  ( F ( V Trails  E
) P  /\  Fun  `' P ) )  -> 
( F ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) )
5049ex 434 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( ( F ( V Trails  E
) P  /\  Fun  `' P )  ->  ( F ( V Trails  E
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) ) )
51 isspth 24549 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V SPaths  E ) P 
<->  ( F ( V Trails  E ) P  /\  Fun  `' P ) ) )
52 ispth 24548 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Paths  E ) P 
<->  ( F ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) ) )
5350, 51, 523imtr4d 268 . 2  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V SPaths  E ) P  ->  F ( V Paths 
E ) P ) )
542, 53mpcom 36 1  |-  ( F ( V SPaths  E ) P  ->  F ( V Paths  E ) P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   _Vcvv 3095    i^i cin 3460   (/)c0 3770   {cpr 4016   class class class wbr 4437   `'ccnv 4988   dom cdm 4989    |` cres 4991   "cima 4992   Fun wfun 5572   -->wf 5574   ` cfv 5578  (class class class)co 6281   Fincfn 7518   RRcr 9494   0cc0 9495   1c1 9496    < clt 9631    <_ cle 9632   ZZcz 10871   ZZ>=cuz 11092   ...cfz 11683  ..^cfzo 11806   #chash 12387  Word cword 12516   Walks cwalk 24476   Trails ctrail 24477   Paths cpath 24478   SPaths cspath 24479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-n0 10803  df-z 10872  df-uz 11093  df-fz 11684  df-fzo 11807  df-hash 12388  df-word 12524  df-wlk 24486  df-trail 24487  df-pth 24488  df-spth 24489
This theorem is referenced by:  spthon  24562  isspthonpth  24564  el2spthonot  24848  usg2wotspth  24862  usgra2pthspth  32305  spthdifv  32306  usgra2pth  32308
  Copyright terms: Public domain W3C validator