![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spsd | Structured version Visualization version Unicode version |
Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.) |
Ref | Expression |
---|---|
spsd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
spsd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1948 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | spsd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-12 1944 |
This theorem depends on definitions: df-bi 190 df-an 377 df-ex 1675 |
This theorem is referenced by: axc11nlem 2032 axc11nlemALT 2153 equveli 2191 nfsb4t 2229 mo2v 2317 moexex 2381 2eu6 2398 zorn2lem4 8960 zorn2lem5 8961 axpowndlem3 9055 axacndlem5 9067 bj-axc11nlemv 31393 wl-equsal1i 31922 axc5c4c711 36797 |
Copyright terms: Public domain | W3C validator |