Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sps-o Structured version   Unicode version

Theorem sps-o 35090
Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sps-o.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
sps-o  |-  ( A. x ph  ->  ps )

Proof of Theorem sps-o
StepHypRef Expression
1 ax-c5 35066 . 2  |-  ( A. x ph  ->  ph )
2 sps-o.1 . 2  |-  ( ph  ->  ps )
31, 2syl 16 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-c5 35066
This theorem is referenced by:  axc5c711toc7  35102  axc11n-16  35120  ax12eq  35123  ax12el  35124  ax12inda  35130  ax12v2-o  35131  axc11-o  35133
  Copyright terms: Public domain W3C validator