MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sps-o Structured version   Unicode version

Theorem sps-o 2218
Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sps-o.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
sps-o  |-  ( A. x ph  ->  ps )

Proof of Theorem sps-o
StepHypRef Expression
1 ax-c5 2194 . 2  |-  ( A. x ph  ->  ph )
2 sps-o.1 . 2  |-  ( ph  ->  ps )
31, 2syl 16 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-c5 2194
This theorem is referenced by:  axc5c711toc7  2230  axc11n-16  2248  ax12eq  2251  ax12el  2252  ax12inda  2258  ax12v2-o  2259  axc11-o  2261
  Copyright terms: Public domain W3C validator