Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimv Structured version   Unicode version

Theorem spimv 2062
 Description: A version of spim 2059 with a distinct variable requirement instead of a bound variable hypothesis. (Contributed by NM, 31-Jul-1993.)
Hypothesis
Ref Expression
spimv.1
Assertion
Ref Expression
spimv
Distinct variable group:   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem spimv
StepHypRef Expression
1 nfv 1751 . 2
2 spimv.1 . 2
31, 2spim 2059 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1435 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-12 1904  ax-13 2052 This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-nf 1664 This theorem is referenced by:  spv  2064  aevOLD  2115  aevALT  2116  axc16i  2117  reu6  3257  el  4599  aev-o  32415  axc11next  36609
 Copyright terms: Public domain W3C validator