Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimt Structured version   Visualization version   Unicode version

Theorem spimt 2097
 Description: Closed theorem form of spim 2098. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.)
Assertion
Ref Expression
spimt

Proof of Theorem spimt
StepHypRef Expression
1 ax6e 2094 . . . 4
2 exim 1706 . . . 4
31, 2mpi 20 . . 3
4 19.35 1740 . . 3
53, 4sylib 200 . 2
6 19.9t 1969 . . 3
76biimpd 211 . 2
85, 7sylan9r 664 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 371  wal 1442  wex 1663  wnf 1667 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-12 1933  ax-13 2091 This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1664  df-nf 1668 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator