MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimt Structured version   Unicode version

Theorem spimt 2006
Description: Closed theorem form of spim 2007. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.)
Assertion
Ref Expression
spimt  |-  ( ( F/ x ps  /\  A. x ( x  =  y  ->  ( ph  ->  ps ) ) )  ->  ( A. x ph  ->  ps ) )

Proof of Theorem spimt
StepHypRef Expression
1 ax6e 2003 . . . 4  |-  E. x  x  =  y
2 exim 1655 . . . 4  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( E. x  x  =  y  ->  E. x
( ph  ->  ps )
) )
31, 2mpi 17 . . 3  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  ->  E. x ( ph  ->  ps ) )
4 19.35 1688 . . 3  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
53, 4sylib 196 . 2  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( A. x ph  ->  E. x ps )
)
6 19.9t 1891 . . 3  |-  ( F/ x ps  ->  ( E. x ps  <->  ps )
)
76biimpd 207 . 2  |-  ( F/ x ps  ->  ( E. x ps  ->  ps ) )
85, 7sylan9r 658 1  |-  ( ( F/ x ps  /\  A. x ( x  =  y  ->  ( ph  ->  ps ) ) )  ->  ( A. x ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1393   E.wex 1613   F/wnf 1617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-12 1855  ax-13 2000
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1614  df-nf 1618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator