Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimeh Structured version   Visualization version   Unicode version

Theorem spimeh 1849
 Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Wolf Lammen, 10-Dec-2017.)
Hypotheses
Ref Expression
spimeh.1
spimeh.2
Assertion
Ref Expression
spimeh
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem spimeh
StepHypRef Expression
1 spimeh.1 . 2
2 ax6ev 1815 . . . 4
3 spimeh.2 . . . 4
42, 3eximii 1717 . . 3
5419.35i 1749 . 2
61, 5syl 17 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1450  wex 1671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-6 1813 This theorem depends on definitions:  df-bi 190  df-ex 1672 This theorem is referenced by:  bj-spimevw  31333  bj-cbvexiw  31335
 Copyright terms: Public domain W3C validator