![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spimeh | Structured version Visualization version Unicode version |
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
Ref | Expression |
---|---|
spimeh.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
spimeh.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
spimeh |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spimeh.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax6ev 1815 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | spimeh.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eximii 1717 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | 19.35i 1749 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 ax-6 1813 |
This theorem depends on definitions: df-bi 190 df-ex 1672 |
This theorem is referenced by: bj-spimevw 31333 bj-cbvexiw 31335 |
Copyright terms: Public domain | W3C validator |