MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimeh Structured version   Visualization version   Unicode version

Theorem spimeh 1849
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Wolf Lammen, 10-Dec-2017.)
Hypotheses
Ref Expression
spimeh.1  |-  ( ph  ->  A. x ph )
spimeh.2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spimeh  |-  ( ph  ->  E. x ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem spimeh
StepHypRef Expression
1 spimeh.1 . 2  |-  ( ph  ->  A. x ph )
2 ax6ev 1815 . . . 4  |-  E. x  x  =  y
3 spimeh.2 . . . 4  |-  ( x  =  y  ->  ( ph  ->  ps ) )
42, 3eximii 1717 . . 3  |-  E. x
( ph  ->  ps )
5419.35i 1749 . 2  |-  ( A. x ph  ->  E. x ps )
61, 5syl 17 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1450   E.wex 1671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-6 1813
This theorem depends on definitions:  df-bi 190  df-ex 1672
This theorem is referenced by:  bj-spimevw  31333  bj-cbvexiw  31335
  Copyright terms: Public domain W3C validator