Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcgf Structured version   Unicode version

Theorem spcgf 3152
 Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
Hypotheses
Ref Expression
spcgf.1
spcgf.2
spcgf.3
Assertion
Ref Expression
spcgf

Proof of Theorem spcgf
StepHypRef Expression
1 spcgf.2 . . 3
2 spcgf.1 . . 3
31, 2spcgft 3149 . 2
4 spcgf.3 . 2
53, 4mpg 1594 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184  wal 1368   wceq 1370  wnf 1590   wcel 1758  wnfc 2600 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-v 3074 This theorem is referenced by:  spcegf  3153  spcgv  3157  rspc  3167  elabgt  3204  eusvnf  4590  sumeq2w  13282  prodeq2w  27564
 Copyright terms: Public domain W3C validator