Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2ev Structured version   Visualization version   Unicode version

Theorem spc2ev 3141
 Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypotheses
Ref Expression
spc2ev.1
spc2ev.2
spc2ev.3
Assertion
Ref Expression
spc2ev
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem spc2ev
StepHypRef Expression
1 spc2ev.1 . 2
2 spc2ev.2 . 2
3 spc2ev.3 . . 3
43spc2egv 3135 . 2
51, 2, 4mp2an 677 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 188   wa 371   wceq 1443  wex 1662   wcel 1886  cvv 3044 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-ext 2430 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-v 3046 This theorem is referenced by:  relop  4984  endisj  7656  dcomex  8874  axcnre  9585  constr3cyclpe  25384  3v3e3cycl2  25385  qqhval2  28779  itg2addnclem3  31988  funop1  39014  wlkc  39651
 Copyright terms: Public domain W3C validator