![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > spc2ev | Structured version Unicode version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
spc2ev.1 |
![]() ![]() ![]() ![]() |
spc2ev.2 |
![]() ![]() ![]() ![]() |
spc2ev.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
spc2ev |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc2ev.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | spc2ev.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | spc2ev.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | spc2egv 3157 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 2, 4 | mp2an 672 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-10 1777 ax-11 1782 ax-12 1794 ax-ext 2430 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-clab 2437 df-cleq 2443 df-clel 2446 df-v 3072 |
This theorem is referenced by: relop 5090 th3qlem2 7309 endisj 7500 dcomex 8719 axcnre 9434 constr3cyclpe 23686 3v3e3cycl2 23687 qqhval2 26547 itg2addnclem3 28585 |
Copyright terms: Public domain | W3C validator |