MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2egv Structured version   Unicode version

Theorem spc2egv 3168
Description: Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
spc2egv.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
spc2egv  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ps  ->  E. x E. y ph ) )
Distinct variable groups:    x, y, A    x, B, y    ps, x, y
Allowed substitution hints:    ph( x, y)    V( x, y)    W( x, y)

Proof of Theorem spc2egv
StepHypRef Expression
1 elisset 3091 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
2 elisset 3091 . . . 4  |-  ( B  e.  W  ->  E. y 
y  =  B )
31, 2anim12i 568 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  x  =  A  /\  E. y  y  =  B
) )
4 eeanv 2047 . . 3  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  <->  ( E. x  x  =  A  /\  E. y 
y  =  B ) )
53, 4sylibr 215 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. x E. y
( x  =  A  /\  y  =  B ) )
6 spc2egv.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
76biimprcd 228 . . 3  |-  ( ps 
->  ( ( x  =  A  /\  y  =  B )  ->  ph )
)
872eximdv 1760 . 2  |-  ( ps 
->  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  E. x E. y ph ) )
95, 8syl5com 31 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ps  ->  E. x E. y ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1657    e. wcel 1872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-ext 2401
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-v 3082
This theorem is referenced by:  spc2gv  3169  spc2ev  3174  tpres  6132  addsrpr  9506  mulsrpr  9507  0pthonv  25309  1pthon2v  25321  2pthon3v  25332  usg2wlk  25343  usg2wlkon  25344  dvnprodlem1  37761
  Copyright terms: Public domain W3C validator