HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanval Structured version   Unicode version

Theorem spanval 26665
Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
spanval  |-  ( A 
C_  ~H  ->  ( span `  A )  =  |^| { x  e.  SH  |  A  C_  x } )
Distinct variable group:    x, A

Proof of Theorem spanval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 26330 . . . 4  |-  ~H  e.  _V
21elpw2 4558 . . 3  |-  ( A  e.  ~P ~H  <->  A  C_  ~H )
32biimpri 206 . 2  |-  ( A 
C_  ~H  ->  A  e. 
~P ~H )
4 helsh 26577 . . . 4  |-  ~H  e.  SH
5 sseq2 3464 . . . . 5  |-  ( x  =  ~H  ->  ( A  C_  x  <->  A  C_  ~H ) )
65rspcev 3160 . . . 4  |-  ( ( ~H  e.  SH  /\  A  C_  ~H )  ->  E. x  e.  SH  A  C_  x )
74, 6mpan 668 . . 3  |-  ( A 
C_  ~H  ->  E. x  e.  SH  A  C_  x
)
8 intexrab 4553 . . 3  |-  ( E. x  e.  SH  A  C_  x  <->  |^| { x  e.  SH  |  A  C_  x }  e.  _V )
97, 8sylib 196 . 2  |-  ( A 
C_  ~H  ->  |^| { x  e.  SH  |  A  C_  x }  e.  _V )
10 sseq1 3463 . . . . 5  |-  ( y  =  A  ->  (
y  C_  x  <->  A  C_  x
) )
1110rabbidv 3051 . . . 4  |-  ( y  =  A  ->  { x  e.  SH  |  y  C_  x }  =  {
x  e.  SH  |  A  C_  x } )
1211inteqd 4232 . . 3  |-  ( y  =  A  ->  |^| { x  e.  SH  |  y  C_  x }  =  |^| { x  e.  SH  |  A  C_  x } )
13 df-span 26641 . . 3  |-  span  =  ( y  e.  ~P ~H  |->  |^| { x  e.  SH  |  y  C_  x } )
1412, 13fvmptg 5930 . 2  |-  ( ( A  e.  ~P ~H  /\ 
|^| { x  e.  SH  |  A  C_  x }  e.  _V )  ->  ( span `  A )  = 
|^| { x  e.  SH  |  A  C_  x }
)
153, 9, 14syl2anc 659 1  |-  ( A 
C_  ~H  ->  ( span `  A )  =  |^| { x  e.  SH  |  A  C_  x } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    e. wcel 1842   E.wrex 2755   {crab 2758   _Vcvv 3059    C_ wss 3414   ~Pcpw 3955   |^|cint 4227   ` cfv 5569   ~Hchil 26250   SHcsh 26259   spancspn 26263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-i2m1 9590  ax-1ne0 9591  ax-rrecex 9594  ax-cnre 9595  ax-hilex 26330  ax-hfvadd 26331  ax-hv0cl 26334  ax-hfvmul 26336
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-map 7459  df-nn 10577  df-hlim 26303  df-sh 26538  df-ch 26553  df-span 26641
This theorem is referenced by:  spancl  26668  spanss2  26677  spanid  26679  spanss  26680  shsval3i  26720  elspani  26875
  Copyright terms: Public domain W3C validator