HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanuni Structured version   Unicode version

Theorem spanuni 26124
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanun.1  |-  A  C_  ~H
spanun.2  |-  B  C_  ~H
Assertion
Ref Expression
spanuni  |-  ( span `  ( A  u.  B
) )  =  ( ( span `  A
)  +H  ( span `  B ) )

Proof of Theorem spanuni
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanun.1 . . . . . . 7  |-  A  C_  ~H
2 spancl 25916 . . . . . . 7  |-  ( A 
C_  ~H  ->  ( span `  A )  e.  SH )
31, 2ax-mp 5 . . . . . 6  |-  ( span `  A )  e.  SH
4 spanun.2 . . . . . . 7  |-  B  C_  ~H
5 spancl 25916 . . . . . . 7  |-  ( B 
C_  ~H  ->  ( span `  B )  e.  SH )
64, 5ax-mp 5 . . . . . 6  |-  ( span `  B )  e.  SH
73, 6shscli 25897 . . . . 5  |-  ( (
span `  A )  +H  ( span `  B
) )  e.  SH
87shssii 25792 . . . 4  |-  ( (
span `  A )  +H  ( span `  B
) )  C_  ~H
9 spanss2 25925 . . . . . . 7  |-  ( A 
C_  ~H  ->  A  C_  ( span `  A )
)
101, 9ax-mp 5 . . . . . 6  |-  A  C_  ( span `  A )
11 spanss2 25925 . . . . . . 7  |-  ( B 
C_  ~H  ->  B  C_  ( span `  B )
)
124, 11ax-mp 5 . . . . . 6  |-  B  C_  ( span `  B )
13 unss12 3669 . . . . . 6  |-  ( ( A  C_  ( span `  A )  /\  B  C_  ( span `  B
) )  ->  ( A  u.  B )  C_  ( ( span `  A
)  u.  ( span `  B ) ) )
1410, 12, 13mp2an 672 . . . . 5  |-  ( A  u.  B )  C_  ( ( span `  A
)  u.  ( span `  B ) )
153, 6shunssi 25948 . . . . 5  |-  ( (
span `  A )  u.  ( span `  B
) )  C_  (
( span `  A )  +H  ( span `  B
) )
1614, 15sstri 3506 . . . 4  |-  ( A  u.  B )  C_  ( ( span `  A
)  +H  ( span `  B ) )
17 spanss 25928 . . . 4  |-  ( ( ( ( span `  A
)  +H  ( span `  B ) )  C_  ~H  /\  ( A  u.  B )  C_  (
( span `  A )  +H  ( span `  B
) ) )  -> 
( span `  ( A  u.  B ) )  C_  ( span `  ( ( span `  A )  +H  ( span `  B
) ) ) )
188, 16, 17mp2an 672 . . 3  |-  ( span `  ( A  u.  B
) )  C_  ( span `  ( ( span `  A )  +H  ( span `  B ) ) )
19 spanid 25927 . . . 4  |-  ( ( ( span `  A
)  +H  ( span `  B ) )  e.  SH  ->  ( span `  ( ( span `  A
)  +H  ( span `  B ) ) )  =  ( ( span `  A )  +H  ( span `  B ) ) )
207, 19ax-mp 5 . . 3  |-  ( span `  ( ( span `  A
)  +H  ( span `  B ) ) )  =  ( ( span `  A )  +H  ( span `  B ) )
2118, 20sseqtri 3529 . 2  |-  ( span `  ( A  u.  B
) )  C_  (
( span `  A )  +H  ( span `  B
) )
223, 6shseli 25896 . . . . 5  |-  ( x  e.  ( ( span `  A )  +H  ( span `  B ) )  <->  E. z  e.  ( span `  A ) E. w  e.  ( span `  B ) x  =  ( z  +h  w
) )
23 r2ex 2978 . . . . 5  |-  ( E. z  e.  ( span `  A ) E. w  e.  ( span `  B
) x  =  ( z  +h  w )  <->  E. z E. w ( ( z  e.  (
span `  A )  /\  w  e.  ( span `  B ) )  /\  x  =  ( z  +h  w ) ) )
2422, 23bitri 249 . . . 4  |-  ( x  e.  ( ( span `  A )  +H  ( span `  B ) )  <->  E. z E. w ( ( z  e.  (
span `  A )  /\  w  e.  ( span `  B ) )  /\  x  =  ( z  +h  w ) ) )
25 vex 3109 . . . . . . . . . . 11  |-  z  e. 
_V
2625elspani 26123 . . . . . . . . . 10  |-  ( A 
C_  ~H  ->  ( z  e.  ( span `  A
)  <->  A. y  e.  SH  ( A  C_  y  -> 
z  e.  y ) ) )
271, 26ax-mp 5 . . . . . . . . 9  |-  ( z  e.  ( span `  A
)  <->  A. y  e.  SH  ( A  C_  y  -> 
z  e.  y ) )
28 vex 3109 . . . . . . . . . . 11  |-  w  e. 
_V
2928elspani 26123 . . . . . . . . . 10  |-  ( B 
C_  ~H  ->  ( w  e.  ( span `  B
)  <->  A. y  e.  SH  ( B  C_  y  ->  w  e.  y )
) )
304, 29ax-mp 5 . . . . . . . . 9  |-  ( w  e.  ( span `  B
)  <->  A. y  e.  SH  ( B  C_  y  ->  w  e.  y )
)
3127, 30anbi12i 697 . . . . . . . 8  |-  ( ( z  e.  ( span `  A )  /\  w  e.  ( span `  B
) )  <->  ( A. y  e.  SH  ( A  C_  y  ->  z  e.  y )  /\  A. y  e.  SH  ( B  C_  y  ->  w  e.  y ) ) )
32 r19.26 2982 . . . . . . . 8  |-  ( A. y  e.  SH  (
( A  C_  y  ->  z  e.  y )  /\  ( B  C_  y  ->  w  e.  y ) )  <->  ( A. y  e.  SH  ( A  C_  y  ->  z  e.  y )  /\  A. y  e.  SH  ( B  C_  y  ->  w  e.  y ) ) )
3331, 32bitr4i 252 . . . . . . 7  |-  ( ( z  e.  ( span `  A )  /\  w  e.  ( span `  B
) )  <->  A. y  e.  SH  ( ( A 
C_  y  ->  z  e.  y )  /\  ( B  C_  y  ->  w  e.  y ) ) )
34 r19.27av 2988 . . . . . . 7  |-  ( ( A. y  e.  SH  ( ( A  C_  y  ->  z  e.  y )  /\  ( B 
C_  y  ->  w  e.  y ) )  /\  x  =  ( z  +h  w ) )  ->  A. y  e.  SH  ( ( ( A 
C_  y  ->  z  e.  y )  /\  ( B  C_  y  ->  w  e.  y ) )  /\  x  =  ( z  +h  w ) ) )
3533, 34sylanb 472 . . . . . 6  |-  ( ( ( z  e.  (
span `  A )  /\  w  e.  ( span `  B ) )  /\  x  =  ( z  +h  w ) )  ->  A. y  e.  SH  ( ( ( A  C_  y  ->  z  e.  y )  /\  ( B  C_  y  ->  w  e.  y )
)  /\  x  =  ( z  +h  w
) ) )
36 unss 3671 . . . . . . . . . . . 12  |-  ( ( A  C_  y  /\  B  C_  y )  <->  ( A  u.  B )  C_  y
)
37 prth 571 . . . . . . . . . . . 12  |-  ( ( ( A  C_  y  ->  z  e.  y )  /\  ( B  C_  y  ->  w  e.  y ) )  ->  (
( A  C_  y  /\  B  C_  y )  ->  ( z  e.  y  /\  w  e.  y ) ) )
3836, 37syl5bir 218 . . . . . . . . . . 11  |-  ( ( ( A  C_  y  ->  z  e.  y )  /\  ( B  C_  y  ->  w  e.  y ) )  ->  (
( A  u.  B
)  C_  y  ->  ( z  e.  y  /\  w  e.  y )
) )
39 shaddcl 25796 . . . . . . . . . . . 12  |-  ( ( y  e.  SH  /\  z  e.  y  /\  w  e.  y )  ->  ( z  +h  w
)  e.  y )
40393expib 1194 . . . . . . . . . . 11  |-  ( y  e.  SH  ->  (
( z  e.  y  /\  w  e.  y )  ->  ( z  +h  w )  e.  y ) )
4138, 40sylan9r 658 . . . . . . . . . 10  |-  ( ( y  e.  SH  /\  ( ( A  C_  y  ->  z  e.  y )  /\  ( B 
C_  y  ->  w  e.  y ) ) )  ->  ( ( A  u.  B )  C_  y  ->  ( z  +h  w )  e.  y ) )
42 eleq1 2532 . . . . . . . . . . 11  |-  ( x  =  ( z  +h  w )  ->  (
x  e.  y  <->  ( z  +h  w )  e.  y ) )
4342biimprd 223 . . . . . . . . . 10  |-  ( x  =  ( z  +h  w )  ->  (
( z  +h  w
)  e.  y  ->  x  e.  y )
)
4441, 43sylan9 657 . . . . . . . . 9  |-  ( ( ( y  e.  SH  /\  ( ( A  C_  y  ->  z  e.  y )  /\  ( B 
C_  y  ->  w  e.  y ) ) )  /\  x  =  ( z  +h  w ) )  ->  ( ( A  u.  B )  C_  y  ->  x  e.  y ) )
4544expl 618 . . . . . . . 8  |-  ( y  e.  SH  ->  (
( ( ( A 
C_  y  ->  z  e.  y )  /\  ( B  C_  y  ->  w  e.  y ) )  /\  x  =  ( z  +h  w ) )  -> 
( ( A  u.  B )  C_  y  ->  x  e.  y ) ) )
4645ralimia 2848 . . . . . . 7  |-  ( A. y  e.  SH  (
( ( A  C_  y  ->  z  e.  y )  /\  ( B 
C_  y  ->  w  e.  y ) )  /\  x  =  ( z  +h  w ) )  ->  A. y  e.  SH  ( ( A  u.  B )  C_  y  ->  x  e.  y ) )
471, 4unssi 3672 . . . . . . . 8  |-  ( A  u.  B )  C_  ~H
48 vex 3109 . . . . . . . . 9  |-  x  e. 
_V
4948elspani 26123 . . . . . . . 8  |-  ( ( A  u.  B ) 
C_  ~H  ->  ( x  e.  ( span `  ( A  u.  B )
)  <->  A. y  e.  SH  ( ( A  u.  B )  C_  y  ->  x  e.  y ) ) )
5047, 49ax-mp 5 . . . . . . 7  |-  ( x  e.  ( span `  ( A  u.  B )
)  <->  A. y  e.  SH  ( ( A  u.  B )  C_  y  ->  x  e.  y ) )
5146, 50sylibr 212 . . . . . 6  |-  ( A. y  e.  SH  (
( ( A  C_  y  ->  z  e.  y )  /\  ( B 
C_  y  ->  w  e.  y ) )  /\  x  =  ( z  +h  w ) )  ->  x  e.  ( span `  ( A  u.  B
) ) )
5235, 51syl 16 . . . . 5  |-  ( ( ( z  e.  (
span `  A )  /\  w  e.  ( span `  B ) )  /\  x  =  ( z  +h  w ) )  ->  x  e.  ( span `  ( A  u.  B ) ) )
5352exlimivv 1694 . . . 4  |-  ( E. z E. w ( ( z  e.  (
span `  A )  /\  w  e.  ( span `  B ) )  /\  x  =  ( z  +h  w ) )  ->  x  e.  ( span `  ( A  u.  B ) ) )
5424, 53sylbi 195 . . 3  |-  ( x  e.  ( ( span `  A )  +H  ( span `  B ) )  ->  x  e.  (
span `  ( A  u.  B ) ) )
5554ssriv 3501 . 2  |-  ( (
span `  A )  +H  ( span `  B
) )  C_  ( span `  ( A  u.  B ) )
5621, 55eqssi 3513 1  |-  ( span `  ( A  u.  B
) )  =  ( ( span `  A
)  +H  ( span `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762   A.wral 2807   E.wrex 2808    u. cun 3467    C_ wss 3469   ` cfv 5579  (class class class)co 6275   ~Hchil 25498    +h cva 25499   SHcsh 25507    +H cph 25510   spancspn 25511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561  ax-hilex 25578  ax-hfvadd 25579  ax-hvcom 25580  ax-hvass 25581  ax-hv0cl 25582  ax-hvaddid 25583  ax-hfvmul 25584  ax-hvmulid 25585  ax-hvmulass 25586  ax-hvdistr1 25587  ax-hvdistr2 25588  ax-hvmul0 25589  ax-hfi 25658  ax-his1 25661  ax-his2 25662  ax-his3 25663  ax-his4 25664
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-icc 11525  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-topgen 14688  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-top 19159  df-bases 19161  df-topon 19162  df-lm 19489  df-haus 19575  df-grpo 24855  df-gid 24856  df-ginv 24857  df-gdiv 24858  df-ablo 24946  df-vc 25101  df-nv 25147  df-va 25150  df-ba 25151  df-sm 25152  df-0v 25153  df-vs 25154  df-nmcv 25155  df-ims 25156  df-hnorm 25547  df-hvsub 25550  df-hlim 25551  df-sh 25786  df-ch 25801  df-ch0 25833  df-shs 25888  df-span 25889
This theorem is referenced by:  spanun  26125  spanunsni  26159  spansnji  26226
  Copyright terms: Public domain W3C validator