MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soxp Structured version   Unicode version

Theorem soxp 6908
Description: A lexicographical ordering of two strictly ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
Hypothesis
Ref Expression
soxp.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
soxp  |-  ( ( R  Or  A  /\  S  Or  B )  ->  T  Or  ( A  X.  B ) )
Distinct variable groups:    x, A, y    x, B, y    x, R, y    x, S, y
Allowed substitution hints:    T( x, y)

Proof of Theorem soxp
Dummy variables  a 
b  c  d  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sopo 4823 . . 3  |-  ( R  Or  A  ->  R  Po  A )
2 sopo 4823 . . 3  |-  ( S  Or  B  ->  S  Po  B )
3 soxp.1 . . . 4  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
43poxp 6907 . . 3  |-  ( ( R  Po  A  /\  S  Po  B )  ->  T  Po  ( A  X.  B ) )
51, 2, 4syl2an 477 . 2  |-  ( ( R  Or  A  /\  S  Or  B )  ->  T  Po  ( A  X.  B ) )
6 elxp 5022 . . . . 5  |-  ( t  e.  ( A  X.  B )  <->  E. a E. b ( t  = 
<. a ,  b >.  /\  ( a  e.  A  /\  b  e.  B
) ) )
7 elxp 5022 . . . . 5  |-  ( u  e.  ( A  X.  B )  <->  E. c E. d ( u  = 
<. c ,  d >.  /\  ( c  e.  A  /\  d  e.  B
) ) )
8 ioran 490 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d ) )  <->  ( -.  ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  -.  ( a  =  c  /\  b  =  d ) ) )
9 ioran 490 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  ( a R c  \/  ( a  =  c  /\  b S d ) )  <->  ( -.  a R c  /\  -.  ( a  =  c  /\  b S d ) ) )
10 ianor 488 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  ( a  =  c  /\  b S d )  <->  ( -.  a  =  c  \/  -.  b S d ) )
1110anbi2i 694 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( -.  a R c  /\  -.  ( a  =  c  /\  b S d ) )  <-> 
( -.  a R c  /\  ( -.  a  =  c  \/ 
-.  b S d ) ) )
129, 11bitri 249 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  ( a R c  \/  ( a  =  c  /\  b S d ) )  <->  ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) ) )
13 ianor 488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  ( a  =  c  /\  b  =  d )  <->  ( -.  a  =  c  \/  -.  b  =  d )
)
1412, 13anbi12i 697 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  -.  ( a  =  c  /\  b  =  d ) )  <-> 
( ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) )  /\  ( -.  a  =  c  \/  -.  b  =  d ) ) )
158, 14bitri 249 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d ) )  <->  ( ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) )  /\  ( -.  a  =  c  \/  -.  b  =  d )
) )
16 solin 4829 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  ->  (
a R c  \/  a  =  c  \/  c R a ) )
17 3orass 976 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a R c  \/  a  =  c  \/  c R a )  <-> 
( a R c  \/  ( a  =  c  \/  c R a ) ) )
18 df-or 370 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a R c  \/  ( a  =  c  \/  c R a ) )  <->  ( -.  a R c  ->  (
a  =  c  \/  c R a ) ) )
1917, 18bitri 249 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a R c  \/  a  =  c  \/  c R a )  <-> 
( -.  a R c  ->  ( a  =  c  \/  c R a ) ) )
2016, 19sylib 196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  ->  ( -.  a R c  -> 
( a  =  c  \/  c R a ) ) )
21 solin 4829 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) )  ->  (
b S d  \/  b  =  d  \/  d S b ) )
22 3orass 976 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( b S d  \/  b  =  d  \/  d S b )  <-> 
( b S d  \/  ( b  =  d  \/  d S b ) ) )
23 df-or 370 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( b S d  \/  ( b  =  d  \/  d S b ) )  <->  ( -.  b S d  ->  (
b  =  d  \/  d S b ) ) )
2422, 23bitri 249 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( b S d  \/  b  =  d  \/  d S b )  <-> 
( -.  b S d  ->  ( b  =  d  \/  d S b ) ) )
2521, 24sylib 196 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) )  ->  ( -.  b S d  -> 
( b  =  d  \/  d S b ) ) )
2625orim2d 838 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) )  ->  (
( -.  a  =  c  \/  -.  b S d )  -> 
( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) ) )
2720, 26im2anan9 833 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) )  ->  (
( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) ) ) )
28 pm2.53 373 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a  =  c  \/  c R a )  ->  ( -.  a  =  c  ->  c R a ) )
29 orc 385 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( c R a  ->  (
c R a  \/  ( c  =  a  /\  d S b ) ) )
3028, 29syl6 33 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a  =  c  \/  c R a )  ->  ( -.  a  =  c  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
3130adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) )  -> 
( -.  a  =  c  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
32 orel1 382 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( -.  b  =  d  -> 
( ( b  =  d  \/  d S b )  ->  d S b ) )
3332orim2d 838 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  b  =  d  -> 
( ( -.  a  =  c  \/  (
b  =  d  \/  d S b ) )  ->  ( -.  a  =  c  \/  d S b ) ) )
3433anim2d 565 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  b  =  d  -> 
( ( ( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) )  ->  ( (
a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  d S b ) ) ) )
35 imor 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( a  =  c  -> 
d S b )  <-> 
( -.  a  =  c  \/  d S b ) )
3635biimpri 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( -.  a  =  c  \/  d S b )  ->  ( a  =  c  ->  d S b ) )
3736com12 31 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( a  =  c  ->  (
( -.  a  =  c  \/  d S b )  ->  d S b ) )
38 equcomi 1742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( a  =  c  ->  c  =  a )
3938anim1i 568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( a  =  c  /\  d S b )  -> 
( c  =  a  /\  d S b ) )
4039olcd 393 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( a  =  c  /\  d S b )  -> 
( c R a  \/  ( c  =  a  /\  d S b ) ) )
4140ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( a  =  c  ->  (
d S b  -> 
( c R a  \/  ( c  =  a  /\  d S b ) ) ) )
4237, 41syld 44 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( a  =  c  ->  (
( -.  a  =  c  \/  d S b )  ->  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) )
4329a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( c R a  ->  (
( -.  a  =  c  \/  d S b )  ->  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) )
4442, 43jaoi 379 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a  =  c  \/  c R a )  ->  ( ( -.  a  =  c  \/  d S b )  ->  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) )
4544imp 429 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  d S b ) )  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) )
4634, 45syl6com 35 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) )  -> 
( -.  b  =  d  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
4731, 46jaod 380 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) )  -> 
( ( -.  a  =  c  \/  -.  b  =  d )  ->  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) )
4827, 47syl6 33 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) )  ->  (
( -.  a  =  c  \/  -.  b  =  d )  -> 
( c R a  \/  ( c  =  a  /\  d S b ) ) ) ) )
4948impd 431 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) )  /\  ( -.  a  =  c  \/  -.  b  =  d )
)  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
5015, 49syl5bi 217 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( -.  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  (
a  =  c  /\  b  =  d )
)  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
51 df-3or 974 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( c R a  \/  (
c  =  a  /\  d S b ) ) )  <->  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  (
a  =  c  /\  b  =  d )
)  \/  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
52 df-or 370 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d ) )  \/  ( c R a  \/  ( c  =  a  /\  d S b ) ) )  <-> 
( -.  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  (
a  =  c  /\  b  =  d )
)  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
5351, 52bitri 249 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( c R a  \/  (
c  =  a  /\  d S b ) ) )  <->  ( -.  (
( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d ) )  ->  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) )
5450, 53sylibr 212 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d )  \/  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) )
55 pm3.2 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  A  /\  c  e.  A
)  /\  ( b  e.  B  /\  d  e.  B ) )  -> 
( ( a R c  \/  ( a  =  c  /\  b S d ) )  ->  ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) ) ) )
5655ad2ant2l 745 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( a R c  \/  ( a  =  c  /\  b S d ) )  ->  ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) ) ) )
57 idd 24 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( a  =  c  /\  b  =  d )  ->  (
a  =  c  /\  b  =  d )
) )
58 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  ->  (
a  e.  A  /\  c  e.  A )
)
5958ancomd 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  ->  (
c  e.  A  /\  a  e.  A )
)
60 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) )  ->  (
b  e.  B  /\  d  e.  B )
)
6160ancomd 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) )  ->  (
d  e.  B  /\  b  e.  B )
)
62 pm3.2 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( c  e.  A  /\  a  e.  A
)  /\  ( d  e.  B  /\  b  e.  B ) )  -> 
( ( c R a  \/  ( c  =  a  /\  d S b ) )  ->  ( ( ( c  e.  A  /\  a  e.  A )  /\  ( d  e.  B  /\  b  e.  B
) )  /\  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) ) )
6359, 61, 62syl2an 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( c R a  \/  ( c  =  a  /\  d S b ) )  ->  ( ( ( c  e.  A  /\  a  e.  A )  /\  ( d  e.  B  /\  b  e.  B
) )  /\  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) ) )
6456, 57, 633orim123d 1307 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( ( a R c  \/  (
a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d )  \/  (
c R a  \/  ( c  =  a  /\  d S b ) ) )  -> 
( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A
)  /\  ( d  e.  B  /\  b  e.  B ) )  /\  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) ) ) )
6554, 64mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A
)  /\  ( d  e.  B  /\  b  e.  B ) )  /\  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) ) )
6665an4s 824 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  Or  A  /\  S  Or  B
)  /\  ( (
a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A
)  /\  ( d  e.  B  /\  b  e.  B ) )  /\  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) ) )
6766expcom 435 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  A  /\  c  e.  A
)  /\  ( b  e.  B  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( (
( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A )  /\  (
d  e.  B  /\  b  e.  B )
)  /\  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) ) ) )
6867an4s 824 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( (
( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A )  /\  (
d  e.  B  /\  b  e.  B )
)  /\  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) ) ) )
69 breq12 4458 . . . . . . . . . . . . . . . . 17  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t T u  <->  <. a ,  b >. T <. c ,  d >. )
)
70 eqeq12 2486 . . . . . . . . . . . . . . . . 17  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t  =  u  <->  <. a ,  b >.  =  <. c ,  d >. )
)
71 breq12 4458 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  =  <. c ,  d >.  /\  t  =  <. a ,  b
>. )  ->  ( u T t  <->  <. c ,  d >. T <. a ,  b >. )
)
7271ancoms 453 . . . . . . . . . . . . . . . . 17  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( u T t  <->  <. c ,  d >. T <. a ,  b >. )
)
7369, 70, 723orbi123d 1298 . . . . . . . . . . . . . . . 16  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( ( t T u  \/  t  =  u  \/  u T t )  <-> 
( <. a ,  b
>. T <. c ,  d
>.  \/  <. a ,  b
>.  =  <. c ,  d >.  \/  <. c ,  d >. T <. a ,  b >. )
) )
743xporderlem 6906 . . . . . . . . . . . . . . . . 17  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
75 vex 3121 . . . . . . . . . . . . . . . . . 18  |-  a  e. 
_V
76 vex 3121 . . . . . . . . . . . . . . . . . 18  |-  b  e. 
_V
7775, 76opth 4727 . . . . . . . . . . . . . . . . 17  |-  ( <.
a ,  b >.  =  <. c ,  d
>. 
<->  ( a  =  c  /\  b  =  d ) )
783xporderlem 6906 . . . . . . . . . . . . . . . . 17  |-  ( <.
c ,  d >. T <. a ,  b
>. 
<->  ( ( ( c  e.  A  /\  a  e.  A )  /\  (
d  e.  B  /\  b  e.  B )
)  /\  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
7974, 77, 783orbi123i 1186 . . . . . . . . . . . . . . . 16  |-  ( (
<. a ,  b >. T <. c ,  d
>.  \/  <. a ,  b
>.  =  <. c ,  d >.  \/  <. c ,  d >. T <. a ,  b >. )  <->  ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A )  /\  (
d  e.  B  /\  b  e.  B )
)  /\  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) ) )
8073, 79syl6bb 261 . . . . . . . . . . . . . . 15  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( ( t T u  \/  t  =  u  \/  u T t )  <-> 
( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A
)  /\  ( d  e.  B  /\  b  e.  B ) )  /\  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) ) ) )
8180biimprcd 225 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A )  /\  (
d  e.  B  /\  b  e.  B )
)  /\  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )  ->  (
( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t T u  \/  t  =  u  \/  u T t ) ) )
8268, 81syl6 33 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( (
t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
8382com3r 79 . . . . . . . . . . . 12  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
8483imp 429 . . . . . . . . . . 11  |-  ( ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  /\  (
( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) ) )  ->  ( ( R  Or  A  /\  S  Or  B )  ->  (
t T u  \/  t  =  u  \/  u T t ) ) )
8584an4s 824 . . . . . . . . . 10  |-  ( ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) ) )  ->  ( ( R  Or  A  /\  S  Or  B )  ->  (
t T u  \/  t  =  u  \/  u T t ) ) )
8685expcom 435 . . . . . . . . 9  |-  ( ( u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( ( R  Or  A  /\  S  Or  B )  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
8786exlimivv 1699 . . . . . . . 8  |-  ( E. c E. d ( u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( ( R  Or  A  /\  S  Or  B )  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
8887com12 31 . . . . . . 7  |-  ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
8988exlimivv 1699 . . . . . 6  |-  ( E. a E. b ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
9089imp 429 . . . . 5  |-  ( ( E. a E. b
( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  E. c E. d ( u  = 
<. c ,  d >.  /\  ( c  e.  A  /\  d  e.  B
) ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( t T u  \/  t  =  u  \/  u T t ) ) )
916, 7, 90syl2anb 479 . . . 4  |-  ( ( t  e.  ( A  X.  B )  /\  u  e.  ( A  X.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( t T u  \/  t  =  u  \/  u T t ) ) )
9291com12 31 . . 3  |-  ( ( R  Or  A  /\  S  Or  B )  ->  ( ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) )  ->  (
t T u  \/  t  =  u  \/  u T t ) ) )
9392ralrimivv 2887 . 2  |-  ( ( R  Or  A  /\  S  Or  B )  ->  A. t  e.  ( A  X.  B ) A. u  e.  ( A  X.  B ) ( t T u  \/  t  =  u  \/  u T t ) )
94 df-so 4807 . 2  |-  ( T  Or  ( A  X.  B )  <->  ( T  Po  ( A  X.  B
)  /\  A. t  e.  ( A  X.  B
) A. u  e.  ( A  X.  B
) ( t T u  \/  t  =  u  \/  u T t ) ) )
955, 93, 94sylanbrc 664 1  |-  ( ( R  Or  A  /\  S  Or  B )  ->  T  Or  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 972    = wceq 1379   E.wex 1596    e. wcel 1767   A.wral 2817   <.cop 4039   class class class wbr 4453   {copab 4510    Po wpo 4804    Or wor 4805    X. cxp 5003   ` cfv 5594   1stc1st 6793   2ndc2nd 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-iota 5557  df-fun 5596  df-fv 5602  df-1st 6795  df-2nd 6796
This theorem is referenced by:  wexp  6909
  Copyright terms: Public domain W3C validator