MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotrieq Structured version   Unicode version

Theorem sotrieq 4667
Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
sotrieq  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )

Proof of Theorem sotrieq
StepHypRef Expression
1 sonr 4661 . . . . . . 7  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
21adantrr 716 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  B R B )
3 pm1.2 513 . . . . . 6  |-  ( ( B R B  \/  B R B )  ->  B R B )
42, 3nsyl 121 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R B  \/  B R B ) )
5 breq2 4295 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  B R C ) )
6 breq1 4294 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  C R B ) )
75, 6orbi12d 709 . . . . . 6  |-  ( B  =  C  ->  (
( B R B  \/  B R B )  <->  ( B R C  \/  C R B ) ) )
87notbid 294 . . . . 5  |-  ( B  =  C  ->  ( -.  ( B R B  \/  B R B )  <->  -.  ( B R C  \/  C R B ) ) )
94, 8syl5ibcom 220 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  ->  -.  ( B R C  \/  C R B ) ) )
109con2d 115 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( B R C  \/  C R B )  ->  -.  B  =  C ) )
11 solin 4663 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
12 3orass 968 . . . . 5  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B R C  \/  ( B  =  C  \/  C R B ) ) )
13 or12 523 . . . . 5  |-  ( ( B R C  \/  ( B  =  C  \/  C R B ) )  <->  ( B  =  C  \/  ( B R C  \/  C R B ) ) )
14 df-or 370 . . . . 5  |-  ( ( B  =  C  \/  ( B R C  \/  C R B ) )  <-> 
( -.  B  =  C  ->  ( B R C  \/  C R B ) ) )
1512, 13, 143bitri 271 . . . 4  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( -.  B  =  C  ->  ( B R C  \/  C R B ) ) )
1611, 15sylib 196 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( -.  B  =  C  ->  ( B R C  \/  C R B ) ) )
1710, 16impbid 191 . 2  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( B R C  \/  C R B )  <->  -.  B  =  C ) )
1817con2bid 329 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 964    = wceq 1369    e. wcel 1756   class class class wbr 4291    Or wor 4639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ral 2719  df-rab 2723  df-v 2973  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-br 4292  df-po 4640  df-so 4641
This theorem is referenced by:  sotrieq2  4668  sossfld  5284  soisores  6017  soisoi  6018  weniso  6044  wemapsolem  7763  distrlem4pr  9194  addcanpr  9214  sqgt0sr  9272  lttri2  9456  xrlttri2  11118  xrltne  11136  soseq  27714
  Copyright terms: Public domain W3C validator