Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotrieq Structured version   Visualization version   Unicode version

Theorem sotrieq 4787
 Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
sotrieq

Proof of Theorem sotrieq
StepHypRef Expression
1 sonr 4781 . . . . . . 7
21adantrr 731 . . . . . 6
3 pm1.2 522 . . . . . 6
42, 3nsyl 125 . . . . 5
5 breq2 4399 . . . . . . 7
6 breq1 4398 . . . . . . 7
75, 6orbi12d 724 . . . . . 6
87notbid 301 . . . . 5
94, 8syl5ibcom 228 . . . 4
109con2d 119 . . 3
11 solin 4783 . . . 4
12 3orass 1010 . . . . 5
13 or12 532 . . . . 5
14 df-or 377 . . . . 5
1512, 13, 143bitri 279 . . . 4
1611, 15sylib 201 . . 3
1710, 16impbid 195 . 2
1817con2bid 336 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 189   wo 375   wa 376   w3o 1006   wceq 1452   wcel 1904   class class class wbr 4395   wor 4759 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-po 4760  df-so 4761 This theorem is referenced by:  sotrieq2  4788  sossfld  5289  soisores  6236  soisoi  6237  weniso  6263  wemapsolem  8083  distrlem4pr  9469  addcanpr  9489  sqgt0sr  9548  lttri2  9734  xrlttri2  11464  xrltne  11483  soseq  30563
 Copyright terms: Public domain W3C validator