MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotrieq Structured version   Unicode version

Theorem sotrieq 4836
Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
sotrieq  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )

Proof of Theorem sotrieq
StepHypRef Expression
1 sonr 4830 . . . . . . 7  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
21adantrr 716 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  B R B )
3 pm1.2 513 . . . . . 6  |-  ( ( B R B  \/  B R B )  ->  B R B )
42, 3nsyl 121 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R B  \/  B R B ) )
5 breq2 4460 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  B R C ) )
6 breq1 4459 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  C R B ) )
75, 6orbi12d 709 . . . . . 6  |-  ( B  =  C  ->  (
( B R B  \/  B R B )  <->  ( B R C  \/  C R B ) ) )
87notbid 294 . . . . 5  |-  ( B  =  C  ->  ( -.  ( B R B  \/  B R B )  <->  -.  ( B R C  \/  C R B ) ) )
94, 8syl5ibcom 220 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  ->  -.  ( B R C  \/  C R B ) ) )
109con2d 115 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( B R C  \/  C R B )  ->  -.  B  =  C ) )
11 solin 4832 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
12 3orass 976 . . . . 5  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B R C  \/  ( B  =  C  \/  C R B ) ) )
13 or12 523 . . . . 5  |-  ( ( B R C  \/  ( B  =  C  \/  C R B ) )  <->  ( B  =  C  \/  ( B R C  \/  C R B ) ) )
14 df-or 370 . . . . 5  |-  ( ( B  =  C  \/  ( B R C  \/  C R B ) )  <-> 
( -.  B  =  C  ->  ( B R C  \/  C R B ) ) )
1512, 13, 143bitri 271 . . . 4  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( -.  B  =  C  ->  ( B R C  \/  C R B ) ) )
1611, 15sylib 196 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( -.  B  =  C  ->  ( B R C  \/  C R B ) ) )
1710, 16impbid 191 . 2  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( B R C  \/  C R B )  <->  -.  B  =  C ) )
1817con2bid 329 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 972    = wceq 1395    e. wcel 1819   class class class wbr 4456    Or wor 4808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-br 4457  df-po 4809  df-so 4810
This theorem is referenced by:  sotrieq2  4837  sossfld  5460  soisores  6224  soisoi  6225  weniso  6251  wemapsolem  7993  distrlem4pr  9421  addcanpr  9441  sqgt0sr  9500  lttri2  9684  xrlttri2  11373  xrltne  11391  soseq  29508
  Copyright terms: Public domain W3C validator