MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotric Structured version   Unicode version

Theorem sotric 4666
Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996.)
Assertion
Ref Expression
sotric  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  <->  -.  ( B  =  C  \/  C R B ) ) )

Proof of Theorem sotric
StepHypRef Expression
1 sonr 4661 . . . . . 6  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
2 breq2 4295 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  B R C ) )
32notbid 294 . . . . . 6  |-  ( B  =  C  ->  ( -.  B R B  <->  -.  B R C ) )
41, 3syl5ibcom 220 . . . . 5  |-  ( ( R  Or  A  /\  B  e.  A )  ->  ( B  =  C  ->  -.  B R C ) )
54adantrr 716 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  ->  -.  B R C ) )
6 so2nr 4664 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
7 imnan 422 . . . . . 6  |-  ( ( B R C  ->  -.  C R B )  <->  -.  ( B R C  /\  C R B ) )
86, 7sylibr 212 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  C R B ) )
98con2d 115 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( C R B  ->  -.  B R C ) )
105, 9jaod 380 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( B  =  C  \/  C R B )  ->  -.  B R C ) )
11 solin 4663 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
12 3orass 968 . . . . 5  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B R C  \/  ( B  =  C  \/  C R B ) ) )
13 df-or 370 . . . . 5  |-  ( ( B R C  \/  ( B  =  C  \/  C R B ) )  <->  ( -.  B R C  ->  ( B  =  C  \/  C R B ) ) )
1412, 13bitri 249 . . . 4  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( -.  B R C  ->  ( B  =  C  \/  C R B ) ) )
1511, 14sylib 196 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( -.  B R C  -> 
( B  =  C  \/  C R B ) ) )
1610, 15impbid 191 . 2  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( B  =  C  \/  C R B )  <->  -.  B R C ) )
1716con2bid 329 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  <->  -.  ( B  =  C  \/  C R B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 964    = wceq 1369    e. wcel 1756   class class class wbr 4291    Or wor 4639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ral 2719  df-rab 2723  df-v 2973  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-br 4292  df-po 4640  df-so 4641
This theorem is referenced by:  sotr2  4669  sotri2  5226  sotri3  5227  somin1  5233  somincom  5234  soisores  6017  soisoi  6018  fimaxg  7558  suplub2  7710  ordtypelem7  7737  fpwwe2  8809  indpi  9075  nqereu  9097  ltsonq  9137  prub  9162  ltapr  9213  suplem2pr  9221  ltsosr  9260  axpre-lttri  9331  supgtoreq  30741
  Copyright terms: Public domain W3C validator