Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotr Structured version   Unicode version

Theorem sotr 4764
 Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
sotr

Proof of Theorem sotr
StepHypRef Expression
1 sopo 4759 . 2
2 potr 4754 . 2
31, 2sylan 471 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   w3a 965   wcel 1758   class class class wbr 4393   wpo 4740   wor 4741 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ral 2800  df-rab 2804  df-v 3073  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-br 4394  df-po 4742  df-so 4743 This theorem is referenced by:  sotr2  4771  wetrep  4814  wereu2  4818  sotri  5326  sotriOLD  5331  suplub2  7815  slttr  27949  fin2solem  28556
 Copyright terms: Public domain W3C validator