MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sornom Structured version   Unicode version

Theorem sornom 8558
Description: The range of a single-step monotone function from  om into a partially ordered set is a chain. (Contributed by Stefan O'Rear, 3-Nov-2014.)
Assertion
Ref Expression
sornom  |-  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  R  Or  ran  F )
Distinct variable groups:    F, a    R, a

Proof of Theorem sornom
Dummy variables  b 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 990 . 2  |-  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  R  Po  ran  F )
2 fvelrnb 5849 . . . . . 6  |-  ( F  Fn  om  ->  (
b  e.  ran  F  <->  E. d  e.  om  ( F `  d )  =  b ) )
3 fvelrnb 5849 . . . . . 6  |-  ( F  Fn  om  ->  (
c  e.  ran  F  <->  E. e  e.  om  ( F `  e )  =  c ) )
42, 3anbi12d 710 . . . . 5  |-  ( F  Fn  om  ->  (
( b  e.  ran  F  /\  c  e.  ran  F )  <->  ( E. d  e.  om  ( F `  d )  =  b  /\  E. e  e. 
om  ( F `  e )  =  c ) ) )
543ad2ant1 1009 . . . 4  |-  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( b  e.  ran  F  /\  c  e.  ran  F )  <->  ( E. d  e.  om  ( F `  d )  =  b  /\  E. e  e. 
om  ( F `  e )  =  c ) ) )
6 reeanv 2994 . . . . 5  |-  ( E. d  e.  om  E. e  e.  om  (
( F `  d
)  =  b  /\  ( F `  e )  =  c )  <->  ( E. d  e.  om  ( F `  d )  =  b  /\  E. e  e.  om  ( F `  e )  =  c ) )
7 nnord 6595 . . . . . . . . . . 11  |-  ( d  e.  om  ->  Ord  d )
8 nnord 6595 . . . . . . . . . . 11  |-  ( e  e.  om  ->  Ord  e )
9 ordtri2or2 4924 . . . . . . . . . . 11  |-  ( ( Ord  d  /\  Ord  e )  ->  (
d  C_  e  \/  e  C_  d ) )
107, 8, 9syl2an 477 . . . . . . . . . 10  |-  ( ( d  e.  om  /\  e  e.  om )  ->  ( d  C_  e  \/  e  C_  d ) )
1110adantl 466 . . . . . . . . 9  |-  ( ( ( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  /\  ( d  e. 
om  /\  e  e.  om ) )  ->  (
d  C_  e  \/  e  C_  d ) )
12 vex 3081 . . . . . . . . . . 11  |-  d  e. 
_V
13 vex 3081 . . . . . . . . . . 11  |-  e  e. 
_V
14 eleq1 2526 . . . . . . . . . . . . . 14  |-  ( b  =  d  ->  (
b  e.  om  <->  d  e.  om ) )
15 eleq1 2526 . . . . . . . . . . . . . 14  |-  ( c  =  e  ->  (
c  e.  om  <->  e  e.  om ) )
1614, 15bi2anan9 868 . . . . . . . . . . . . 13  |-  ( ( b  =  d  /\  c  =  e )  ->  ( ( b  e. 
om  /\  c  e.  om )  <->  ( d  e. 
om  /\  e  e.  om ) ) )
1716anbi2d 703 . . . . . . . . . . . 12  |-  ( ( b  =  d  /\  c  =  e )  ->  ( ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  /\  (
b  e.  om  /\  c  e.  om )
)  <->  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  /\  (
d  e.  om  /\  e  e.  om )
) ) )
18 sseq12 3488 . . . . . . . . . . . . 13  |-  ( ( b  =  d  /\  c  =  e )  ->  ( b  C_  c  <->  d 
C_  e ) )
19 fveq2 5800 . . . . . . . . . . . . . . 15  |-  ( b  =  d  ->  ( F `  b )  =  ( F `  d ) )
20 fveq2 5800 . . . . . . . . . . . . . . 15  |-  ( c  =  e  ->  ( F `  c )  =  ( F `  e ) )
2119, 20breqan12d 4416 . . . . . . . . . . . . . 14  |-  ( ( b  =  d  /\  c  =  e )  ->  ( ( F `  b ) R ( F `  c )  <-> 
( F `  d
) R ( F `
 e ) ) )
2219, 20eqeqan12d 2477 . . . . . . . . . . . . . 14  |-  ( ( b  =  d  /\  c  =  e )  ->  ( ( F `  b )  =  ( F `  c )  <-> 
( F `  d
)  =  ( F `
 e ) ) )
2321, 22orbi12d 709 . . . . . . . . . . . . 13  |-  ( ( b  =  d  /\  c  =  e )  ->  ( ( ( F `
 b ) R ( F `  c
)  \/  ( F `
 b )  =  ( F `  c
) )  <->  ( ( F `  d ) R ( F `  e )  \/  ( F `  d )  =  ( F `  e ) ) ) )
2418, 23imbi12d 320 . . . . . . . . . . . 12  |-  ( ( b  =  d  /\  c  =  e )  ->  ( ( b  C_  c  ->  ( ( F `
 b ) R ( F `  c
)  \/  ( F `
 b )  =  ( F `  c
) ) )  <->  ( d  C_  e  ->  ( ( F `  d ) R ( F `  e )  \/  ( F `  d )  =  ( F `  e ) ) ) ) )
2517, 24imbi12d 320 . . . . . . . . . . 11  |-  ( ( b  =  d  /\  c  =  e )  ->  ( ( ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  /\  (
b  e.  om  /\  c  e.  om )
)  ->  ( b  C_  c  ->  ( ( F `  b ) R ( F `  c )  \/  ( F `  b )  =  ( F `  c ) ) ) )  <->  ( ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  /\  (
d  e.  om  /\  e  e.  om )
)  ->  ( d  C_  e  ->  ( ( F `  d ) R ( F `  e )  \/  ( F `  d )  =  ( F `  e ) ) ) ) ) )
26 fveq2 5800 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  b  ->  ( F `  d )  =  ( F `  b ) )
2726breq2d 4413 . . . . . . . . . . . . . . . . 17  |-  ( d  =  b  ->  (
( F `  b
) R ( F `
 d )  <->  ( F `  b ) R ( F `  b ) ) )
2826eqeq2d 2468 . . . . . . . . . . . . . . . . 17  |-  ( d  =  b  ->  (
( F `  b
)  =  ( F `
 d )  <->  ( F `  b )  =  ( F `  b ) ) )
2927, 28orbi12d 709 . . . . . . . . . . . . . . . 16  |-  ( d  =  b  ->  (
( ( F `  b ) R ( F `  d )  \/  ( F `  b )  =  ( F `  d ) )  <->  ( ( F `
 b ) R ( F `  b
)  \/  ( F `
 b )  =  ( F `  b
) ) ) )
3029imbi2d 316 . . . . . . . . . . . . . . 15  |-  ( d  =  b  ->  (
( ( F  Fn  om 
/\  A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  ->  ( ( F `
 b ) R ( F `  d
)  \/  ( F `
 b )  =  ( F `  d
) ) )  <->  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( F `  b
) R ( F `
 b )  \/  ( F `  b
)  =  ( F `
 b ) ) ) ) )
31 fveq2 5800 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  e  ->  ( F `  d )  =  ( F `  e ) )
3231breq2d 4413 . . . . . . . . . . . . . . . . 17  |-  ( d  =  e  ->  (
( F `  b
) R ( F `
 d )  <->  ( F `  b ) R ( F `  e ) ) )
3331eqeq2d 2468 . . . . . . . . . . . . . . . . 17  |-  ( d  =  e  ->  (
( F `  b
)  =  ( F `
 d )  <->  ( F `  b )  =  ( F `  e ) ) )
3432, 33orbi12d 709 . . . . . . . . . . . . . . . 16  |-  ( d  =  e  ->  (
( ( F `  b ) R ( F `  d )  \/  ( F `  b )  =  ( F `  d ) )  <->  ( ( F `
 b ) R ( F `  e
)  \/  ( F `
 b )  =  ( F `  e
) ) ) )
3534imbi2d 316 . . . . . . . . . . . . . . 15  |-  ( d  =  e  ->  (
( ( F  Fn  om 
/\  A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  ->  ( ( F `
 b ) R ( F `  d
)  \/  ( F `
 b )  =  ( F `  d
) ) )  <->  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( F `  b
) R ( F `
 e )  \/  ( F `  b
)  =  ( F `
 e ) ) ) ) )
36 fveq2 5800 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  suc  e  -> 
( F `  d
)  =  ( F `
 suc  e )
)
3736breq2d 4413 . . . . . . . . . . . . . . . . 17  |-  ( d  =  suc  e  -> 
( ( F `  b ) R ( F `  d )  <-> 
( F `  b
) R ( F `
 suc  e )
) )
3836eqeq2d 2468 . . . . . . . . . . . . . . . . 17  |-  ( d  =  suc  e  -> 
( ( F `  b )  =  ( F `  d )  <-> 
( F `  b
)  =  ( F `
 suc  e )
) )
3937, 38orbi12d 709 . . . . . . . . . . . . . . . 16  |-  ( d  =  suc  e  -> 
( ( ( F `
 b ) R ( F `  d
)  \/  ( F `
 b )  =  ( F `  d
) )  <->  ( ( F `  b ) R ( F `  suc  e )  \/  ( F `  b )  =  ( F `  suc  e ) ) ) )
4039imbi2d 316 . . . . . . . . . . . . . . 15  |-  ( d  =  suc  e  -> 
( ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( F `  b
) R ( F `
 d )  \/  ( F `  b
)  =  ( F `
 d ) ) )  <->  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( F `  b
) R ( F `
 suc  e )  \/  ( F `  b
)  =  ( F `
 suc  e )
) ) ) )
41 fveq2 5800 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  c  ->  ( F `  d )  =  ( F `  c ) )
4241breq2d 4413 . . . . . . . . . . . . . . . . 17  |-  ( d  =  c  ->  (
( F `  b
) R ( F `
 d )  <->  ( F `  b ) R ( F `  c ) ) )
4341eqeq2d 2468 . . . . . . . . . . . . . . . . 17  |-  ( d  =  c  ->  (
( F `  b
)  =  ( F `
 d )  <->  ( F `  b )  =  ( F `  c ) ) )
4442, 43orbi12d 709 . . . . . . . . . . . . . . . 16  |-  ( d  =  c  ->  (
( ( F `  b ) R ( F `  d )  \/  ( F `  b )  =  ( F `  d ) )  <->  ( ( F `
 b ) R ( F `  c
)  \/  ( F `
 b )  =  ( F `  c
) ) ) )
4544imbi2d 316 . . . . . . . . . . . . . . 15  |-  ( d  =  c  ->  (
( ( F  Fn  om 
/\  A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  ->  ( ( F `
 b ) R ( F `  d
)  \/  ( F `
 b )  =  ( F `  d
) ) )  <->  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( F `  b
) R ( F `
 c )  \/  ( F `  b
)  =  ( F `
 c ) ) ) ) )
46 eqid 2454 . . . . . . . . . . . . . . . . 17  |-  ( F `
 b )  =  ( F `  b
)
4746olci 391 . . . . . . . . . . . . . . . 16  |-  ( ( F `  b ) R ( F `  b )  \/  ( F `  b )  =  ( F `  b ) )
4847a1ii 27 . . . . . . . . . . . . . . 15  |-  ( b  e.  om  ->  (
( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  ->  ( ( F `
 b ) R ( F `  b
)  \/  ( F `
 b )  =  ( F `  b
) ) ) )
49 simplll 757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F ) )  -> 
e  e.  om )
50 simpr2 995 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F ) )  ->  A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) ) )
51 fveq2 5800 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  =  e  ->  ( F `  a )  =  ( F `  e ) )
52 suceq 4893 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( a  =  e  ->  suc  a  =  suc  e )
5352fveq2d 5804 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  =  e  ->  ( F `  suc  a )  =  ( F `  suc  e ) )
5451, 53breq12d 4414 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  =  e  ->  (
( F `  a
) R ( F `
 suc  a )  <->  ( F `  e ) R ( F `  suc  e ) ) )
5551, 53eqeq12d 2476 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  =  e  ->  (
( F `  a
)  =  ( F `
 suc  a )  <->  ( F `  e )  =  ( F `  suc  e ) ) )
5654, 55orbi12d 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  e  ->  (
( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  <->  ( ( F `  e ) R ( F `  suc  e )  \/  ( F `  e )  =  ( F `  suc  e ) ) ) )
5756rspcva 3177 . . . . . . . . . . . . . . . . . . 19  |-  ( ( e  e.  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
) )  ->  (
( F `  e
) R ( F `
 suc  e )  \/  ( F `  e
)  =  ( F `
 suc  e )
) )
5849, 50, 57syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F ) )  -> 
( ( F `  e ) R ( F `  suc  e
)  \/  ( F `
 e )  =  ( F `  suc  e ) ) )
59 simprr 756 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  R  Po  ran  F )
60 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  F  Fn  om )
61 simpllr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  b  e.  om )
62 fnfvelrn 5950 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  Fn  om  /\  b  e.  om )  ->  ( F `  b
)  e.  ran  F
)
6360, 61, 62syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  ( F `  b )  e.  ran  F )
64 simplll 757 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  e  e.  om )
65 fnfvelrn 5950 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  Fn  om  /\  e  e.  om )  ->  ( F `  e
)  e.  ran  F
)
6660, 64, 65syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  ( F `  e )  e.  ran  F )
67 peano2 6607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( e  e.  om  ->  suc  e  e.  om )
6867ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  suc  e  e.  om )
69 fnfvelrn 5950 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  Fn  om  /\  suc  e  e.  om )  ->  ( F `  suc  e )  e.  ran  F )
7060, 68, 69syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  ( F `  suc  e )  e.  ran  F )
71 potr 4762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( R  Po  ran  F  /\  ( ( F `  b )  e.  ran  F  /\  ( F `  e )  e.  ran  F  /\  ( F `  suc  e )  e.  ran  F ) )  ->  (
( ( F `  b ) R ( F `  e )  /\  ( F `  e ) R ( F `  suc  e
) )  ->  ( F `  b ) R ( F `  suc  e ) ) )
7259, 63, 66, 70, 71syl13anc 1221 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  ( ( ( F `  b ) R ( F `  e )  /\  ( F `  e ) R ( F `  suc  e ) )  -> 
( F `  b
) R ( F `
 suc  e )
) )
7372imp 429 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( e  e.  om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  /\  ( ( F `
 b ) R ( F `  e
)  /\  ( F `  e ) R ( F `  suc  e
) ) )  -> 
( F `  b
) R ( F `
 suc  e )
)
7473ancom2s 800 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( e  e.  om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  /\  ( ( F `
 e ) R ( F `  suc  e )  /\  ( F `  b ) R ( F `  e ) ) )  ->  ( F `  b ) R ( F `  suc  e
) )
7574orcd 392 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( e  e.  om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  /\  ( ( F `
 e ) R ( F `  suc  e )  /\  ( F `  b ) R ( F `  e ) ) )  ->  ( ( F `
 b ) R ( F `  suc  e )  \/  ( F `  b )  =  ( F `  suc  e ) ) )
7675expr 615 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( e  e.  om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  /\  ( F `  e ) R ( F `  suc  e
) )  ->  (
( F `  b
) R ( F `
 e )  -> 
( ( F `  b ) R ( F `  suc  e
)  \/  ( F `
 b )  =  ( F `  suc  e ) ) ) )
77 breq1 4404 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F `  b )  =  ( F `  e )  ->  (
( F `  b
) R ( F `
 suc  e )  <->  ( F `  e ) R ( F `  suc  e ) ) )
7877biimprcd 225 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  e ) R ( F `  suc  e )  ->  (
( F `  b
)  =  ( F `
 e )  -> 
( F `  b
) R ( F `
 suc  e )
) )
79 orc 385 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  b ) R ( F `  suc  e )  ->  (
( F `  b
) R ( F `
 suc  e )  \/  ( F `  b
)  =  ( F `
 suc  e )
) )
8078, 79syl6 33 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  e ) R ( F `  suc  e )  ->  (
( F `  b
)  =  ( F `
 e )  -> 
( ( F `  b ) R ( F `  suc  e
)  \/  ( F `
 b )  =  ( F `  suc  e ) ) ) )
8180adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( e  e.  om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  /\  ( F `  e ) R ( F `  suc  e
) )  ->  (
( F `  b
)  =  ( F `
 e )  -> 
( ( F `  b ) R ( F `  suc  e
)  \/  ( F `
 b )  =  ( F `  suc  e ) ) ) )
8276, 81jaod 380 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( e  e.  om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  /\  ( F `  e ) R ( F `  suc  e
) )  ->  (
( ( F `  b ) R ( F `  e )  \/  ( F `  b )  =  ( F `  e ) )  ->  ( ( F `  b ) R ( F `  suc  e )  \/  ( F `  b )  =  ( F `  suc  e ) ) ) )
8382ex 434 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  ( ( F `
 e ) R ( F `  suc  e )  ->  (
( ( F `  b ) R ( F `  e )  \/  ( F `  b )  =  ( F `  e ) )  ->  ( ( F `  b ) R ( F `  suc  e )  \/  ( F `  b )  =  ( F `  suc  e ) ) ) ) )
84 breq2 4405 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  e )  =  ( F `  suc  e )  ->  (
( F `  b
) R ( F `
 e )  <->  ( F `  b ) R ( F `  suc  e
) ) )
85 eqeq2 2469 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  e )  =  ( F `  suc  e )  ->  (
( F `  b
)  =  ( F `
 e )  <->  ( F `  b )  =  ( F `  suc  e
) ) )
8684, 85orbi12d 709 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  e )  =  ( F `  suc  e )  ->  (
( ( F `  b ) R ( F `  e )  \/  ( F `  b )  =  ( F `  e ) )  <->  ( ( F `
 b ) R ( F `  suc  e )  \/  ( F `  b )  =  ( F `  suc  e ) ) ) )
8786biimpd 207 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  e )  =  ( F `  suc  e )  ->  (
( ( F `  b ) R ( F `  e )  \/  ( F `  b )  =  ( F `  e ) )  ->  ( ( F `  b ) R ( F `  suc  e )  \/  ( F `  b )  =  ( F `  suc  e ) ) ) )
8887a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  ( ( F `
 e )  =  ( F `  suc  e )  ->  (
( ( F `  b ) R ( F `  e )  \/  ( F `  b )  =  ( F `  e ) )  ->  ( ( F `  b ) R ( F `  suc  e )  \/  ( F `  b )  =  ( F `  suc  e ) ) ) ) )
8983, 88jaod 380 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  R  Po  ran  F ) )  ->  ( ( ( F `  e ) R ( F `  suc  e )  \/  ( F `  e )  =  ( F `  suc  e ) )  -> 
( ( ( F `
 b ) R ( F `  e
)  \/  ( F `
 b )  =  ( F `  e
) )  ->  (
( F `  b
) R ( F `
 suc  e )  \/  ( F `  b
)  =  ( F `
 suc  e )
) ) ) )
90893adantr2 1148 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F ) )  -> 
( ( ( F `
 e ) R ( F `  suc  e )  \/  ( F `  e )  =  ( F `  suc  e ) )  -> 
( ( ( F `
 b ) R ( F `  e
)  \/  ( F `
 b )  =  ( F `  e
) )  ->  (
( F `  b
) R ( F `
 suc  e )  \/  ( F `  b
)  =  ( F `
 suc  e )
) ) ) )
9158, 90mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( e  e. 
om  /\  b  e.  om )  /\  b  C_  e )  /\  ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F ) )  -> 
( ( ( F `
 b ) R ( F `  e
)  \/  ( F `
 b )  =  ( F `  e
) )  ->  (
( F `  b
) R ( F `
 suc  e )  \/  ( F `  b
)  =  ( F `
 suc  e )
) ) )
9291ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( ( e  e.  om  /\  b  e.  om )  /\  b  C_  e )  ->  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( ( F `  b ) R ( F `  e )  \/  ( F `  b )  =  ( F `  e ) )  ->  ( ( F `  b ) R ( F `  suc  e )  \/  ( F `  b )  =  ( F `  suc  e ) ) ) ) )
9392a2d 26 . . . . . . . . . . . . . . 15  |-  ( ( ( e  e.  om  /\  b  e.  om )  /\  b  C_  e )  ->  ( ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( F `  b
) R ( F `
 e )  \/  ( F `  b
)  =  ( F `
 e ) ) )  ->  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( F `  b
) R ( F `
 suc  e )  \/  ( F `  b
)  =  ( F `
 suc  e )
) ) ) )
9430, 35, 40, 45, 48, 93findsg 6614 . . . . . . . . . . . . . 14  |-  ( ( ( c  e.  om  /\  b  e.  om )  /\  b  C_  c )  ->  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( F `  b
) R ( F `
 c )  \/  ( F `  b
)  =  ( F `
 c ) ) ) )
9594ancom1s 803 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  om  /\  c  e.  om )  /\  b  C_  c )  ->  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( F `  b
) R ( F `
 c )  \/  ( F `  b
)  =  ( F `
 c ) ) ) )
9695impcom 430 . . . . . . . . . . . 12  |-  ( ( ( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  /\  ( ( b  e.  om  /\  c  e.  om )  /\  b  C_  c ) )  -> 
( ( F `  b ) R ( F `  c )  \/  ( F `  b )  =  ( F `  c ) ) )
9796expr 615 . . . . . . . . . . 11  |-  ( ( ( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  /\  ( b  e. 
om  /\  c  e.  om ) )  ->  (
b  C_  c  ->  ( ( F `  b
) R ( F `
 c )  \/  ( F `  b
)  =  ( F `
 c ) ) ) )
9812, 13, 25, 97vtocl2 3131 . . . . . . . . . 10  |-  ( ( ( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  /\  ( d  e. 
om  /\  e  e.  om ) )  ->  (
d  C_  e  ->  ( ( F `  d
) R ( F `
 e )  \/  ( F `  d
)  =  ( F `
 e ) ) ) )
99 eleq1 2526 . . . . . . . . . . . . . . 15  |-  ( b  =  e  ->  (
b  e.  om  <->  e  e.  om ) )
100 eleq1 2526 . . . . . . . . . . . . . . 15  |-  ( c  =  d  ->  (
c  e.  om  <->  d  e.  om ) )
10199, 100bi2anan9 868 . . . . . . . . . . . . . 14  |-  ( ( b  =  e  /\  c  =  d )  ->  ( ( b  e. 
om  /\  c  e.  om )  <->  ( e  e. 
om  /\  d  e.  om ) ) )
102101anbi2d 703 . . . . . . . . . . . . 13  |-  ( ( b  =  e  /\  c  =  d )  ->  ( ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  /\  (
b  e.  om  /\  c  e.  om )
)  <->  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  /\  (
e  e.  om  /\  d  e.  om )
) ) )
103 sseq12 3488 . . . . . . . . . . . . . 14  |-  ( ( b  =  e  /\  c  =  d )  ->  ( b  C_  c  <->  e 
C_  d ) )
104 fveq2 5800 . . . . . . . . . . . . . . . 16  |-  ( b  =  e  ->  ( F `  b )  =  ( F `  e ) )
105 fveq2 5800 . . . . . . . . . . . . . . . 16  |-  ( c  =  d  ->  ( F `  c )  =  ( F `  d ) )
106104, 105breqan12d 4416 . . . . . . . . . . . . . . 15  |-  ( ( b  =  e  /\  c  =  d )  ->  ( ( F `  b ) R ( F `  c )  <-> 
( F `  e
) R ( F `
 d ) ) )
107104, 105eqeqan12d 2477 . . . . . . . . . . . . . . 15  |-  ( ( b  =  e  /\  c  =  d )  ->  ( ( F `  b )  =  ( F `  c )  <-> 
( F `  e
)  =  ( F `
 d ) ) )
108106, 107orbi12d 709 . . . . . . . . . . . . . 14  |-  ( ( b  =  e  /\  c  =  d )  ->  ( ( ( F `
 b ) R ( F `  c
)  \/  ( F `
 b )  =  ( F `  c
) )  <->  ( ( F `  e ) R ( F `  d )  \/  ( F `  e )  =  ( F `  d ) ) ) )
109103, 108imbi12d 320 . . . . . . . . . . . . 13  |-  ( ( b  =  e  /\  c  =  d )  ->  ( ( b  C_  c  ->  ( ( F `
 b ) R ( F `  c
)  \/  ( F `
 b )  =  ( F `  c
) ) )  <->  ( e  C_  d  ->  ( ( F `  e ) R ( F `  d )  \/  ( F `  e )  =  ( F `  d ) ) ) ) )
110102, 109imbi12d 320 . . . . . . . . . . . 12  |-  ( ( b  =  e  /\  c  =  d )  ->  ( ( ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  /\  (
b  e.  om  /\  c  e.  om )
)  ->  ( b  C_  c  ->  ( ( F `  b ) R ( F `  c )  \/  ( F `  b )  =  ( F `  c ) ) ) )  <->  ( ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  /\  (
e  e.  om  /\  d  e.  om )
)  ->  ( e  C_  d  ->  ( ( F `  e ) R ( F `  d )  \/  ( F `  e )  =  ( F `  d ) ) ) ) ) )
11113, 12, 110, 97vtocl2 3131 . . . . . . . . . . 11  |-  ( ( ( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  /\  ( e  e. 
om  /\  d  e.  om ) )  ->  (
e  C_  d  ->  ( ( F `  e
) R ( F `
 d )  \/  ( F `  e
)  =  ( F `
 d ) ) ) )
112111ancom2s 800 . . . . . . . . . 10  |-  ( ( ( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  /\  ( d  e. 
om  /\  e  e.  om ) )  ->  (
e  C_  d  ->  ( ( F `  e
) R ( F `
 d )  \/  ( F `  e
)  =  ( F `
 d ) ) ) )
11398, 112orim12d 834 . . . . . . . . 9  |-  ( ( ( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  /\  ( d  e. 
om  /\  e  e.  om ) )  ->  (
( d  C_  e  \/  e  C_  d )  ->  ( ( ( F `  d ) R ( F `  e )  \/  ( F `  d )  =  ( F `  e ) )  \/  ( ( F `  e ) R ( F `  d )  \/  ( F `  e )  =  ( F `  d ) ) ) ) )
11411, 113mpd 15 . . . . . . . 8  |-  ( ( ( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  /\  ( d  e. 
om  /\  e  e.  om ) )  ->  (
( ( F `  d ) R ( F `  e )  \/  ( F `  d )  =  ( F `  e ) )  \/  ( ( F `  e ) R ( F `  d )  \/  ( F `  e )  =  ( F `  d ) ) ) )
115 3mix1 1157 . . . . . . . . . 10  |-  ( ( F `  d ) R ( F `  e )  ->  (
( F `  d
) R ( F `
 e )  \/  ( F `  d
)  =  ( F `
 e )  \/  ( F `  e
) R ( F `
 d ) ) )
116 3mix2 1158 . . . . . . . . . 10  |-  ( ( F `  d )  =  ( F `  e )  ->  (
( F `  d
) R ( F `
 e )  \/  ( F `  d
)  =  ( F `
 e )  \/  ( F `  e
) R ( F `
 d ) ) )
117115, 116jaoi 379 . . . . . . . . 9  |-  ( ( ( F `  d
) R ( F `
 e )  \/  ( F `  d
)  =  ( F `
 e ) )  ->  ( ( F `
 d ) R ( F `  e
)  \/  ( F `
 d )  =  ( F `  e
)  \/  ( F `
 e ) R ( F `  d
) ) )
118 3mix3 1159 . . . . . . . . . 10  |-  ( ( F `  e ) R ( F `  d )  ->  (
( F `  d
) R ( F `
 e )  \/  ( F `  d
)  =  ( F `
 e )  \/  ( F `  e
) R ( F `
 d ) ) )
119116eqcoms 2466 . . . . . . . . . 10  |-  ( ( F `  e )  =  ( F `  d )  ->  (
( F `  d
) R ( F `
 e )  \/  ( F `  d
)  =  ( F `
 e )  \/  ( F `  e
) R ( F `
 d ) ) )
120118, 119jaoi 379 . . . . . . . . 9  |-  ( ( ( F `  e
) R ( F `
 d )  \/  ( F `  e
)  =  ( F `
 d ) )  ->  ( ( F `
 d ) R ( F `  e
)  \/  ( F `
 d )  =  ( F `  e
)  \/  ( F `
 e ) R ( F `  d
) ) )
121117, 120jaoi 379 . . . . . . . 8  |-  ( ( ( ( F `  d ) R ( F `  e )  \/  ( F `  d )  =  ( F `  e ) )  \/  ( ( F `  e ) R ( F `  d )  \/  ( F `  e )  =  ( F `  d ) ) )  ->  ( ( F `
 d ) R ( F `  e
)  \/  ( F `
 d )  =  ( F `  e
)  \/  ( F `
 e ) R ( F `  d
) ) )
122114, 121syl 16 . . . . . . 7  |-  ( ( ( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  /\  ( d  e. 
om  /\  e  e.  om ) )  ->  (
( F `  d
) R ( F `
 e )  \/  ( F `  d
)  =  ( F `
 e )  \/  ( F `  e
) R ( F `
 d ) ) )
123 breq12 4406 . . . . . . . 8  |-  ( ( ( F `  d
)  =  b  /\  ( F `  e )  =  c )  -> 
( ( F `  d ) R ( F `  e )  <-> 
b R c ) )
124 eqeq12 2473 . . . . . . . 8  |-  ( ( ( F `  d
)  =  b  /\  ( F `  e )  =  c )  -> 
( ( F `  d )  =  ( F `  e )  <-> 
b  =  c ) )
125 breq12 4406 . . . . . . . . 9  |-  ( ( ( F `  e
)  =  c  /\  ( F `  d )  =  b )  -> 
( ( F `  e ) R ( F `  d )  <-> 
c R b ) )
126125ancoms 453 . . . . . . . 8  |-  ( ( ( F `  d
)  =  b  /\  ( F `  e )  =  c )  -> 
( ( F `  e ) R ( F `  d )  <-> 
c R b ) )
127123, 124, 1263orbi123d 1289 . . . . . . 7  |-  ( ( ( F `  d
)  =  b  /\  ( F `  e )  =  c )  -> 
( ( ( F `
 d ) R ( F `  e
)  \/  ( F `
 d )  =  ( F `  e
)  \/  ( F `
 e ) R ( F `  d
) )  <->  ( b R c  \/  b  =  c  \/  c R b ) ) )
128122, 127syl5ibcom 220 . . . . . 6  |-  ( ( ( F  Fn  om  /\ 
A. a  e.  om  ( ( F `  a ) R ( F `  suc  a
)  \/  ( F `
 a )  =  ( F `  suc  a ) )  /\  R  Po  ran  F )  /\  ( d  e. 
om  /\  e  e.  om ) )  ->  (
( ( F `  d )  =  b  /\  ( F `  e )  =  c )  ->  ( b R c  \/  b  =  c  \/  c R b ) ) )
129128rexlimdvva 2954 . . . . 5  |-  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  ( E. d  e.  om  E. e  e.  om  (
( F `  d
)  =  b  /\  ( F `  e )  =  c )  -> 
( b R c  \/  b  =  c  \/  c R b ) ) )
1306, 129syl5bir 218 . . . 4  |-  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( E. d  e. 
om  ( F `  d )  =  b  /\  E. e  e. 
om  ( F `  e )  =  c )  ->  ( b R c  \/  b  =  c  \/  c R b ) ) )
1315, 130sylbid 215 . . 3  |-  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  (
( b  e.  ran  F  /\  c  e.  ran  F )  ->  ( b R c  \/  b  =  c  \/  c R b ) ) )
132131ralrimivv 2913 . 2  |-  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  A. b  e.  ran  F A. c  e.  ran  F ( b R c  \/  b  =  c  \/  c R b ) )
133 df-so 4751 . 2  |-  ( R  Or  ran  F  <->  ( R  Po  ran  F  /\  A. b  e.  ran  F A. c  e.  ran  F ( b R c  \/  b  =  c  \/  c R b ) ) )
1341, 132, 133sylanbrc 664 1  |-  ( ( F  Fn  om  /\  A. a  e.  om  (
( F `  a
) R ( F `
 suc  a )  \/  ( F `  a
)  =  ( F `
 suc  a )
)  /\  R  Po  ran  F )  ->  R  Or  ran  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 964    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   E.wrex 2800    C_ wss 3437   class class class wbr 4401    Po wpo 4748    Or wor 4749   Ord word 4827   suc csuc 4830   ran crn 4950    Fn wfn 5522   ` cfv 5527   omcom 6587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-iota 5490  df-fun 5529  df-fn 5530  df-fv 5535  df-om 6588
This theorem is referenced by:  fin23lem40  8632
  Copyright terms: Public domain W3C validator