MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soisoi Unicode version

Theorem soisoi 6007
Description: Infer isomorphism from one direction of an order proof for isomorphisms between strict orders. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
soisoi  |-  ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  ->  H  Isom  R ,  S  ( A ,  B ) )
Distinct variable groups:    x, R, y    x, S, y    x, H, y    x, A, y   
x, B, y

Proof of Theorem soisoi
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 733 . . . . 5  |-  ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  ->  H : A -onto-> B )
2 fof 5612 . . . . 5  |-  ( H : A -onto-> B  ->  H : A --> B )
31, 2syl 16 . . . 4  |-  ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  ->  H : A
--> B )
4 simpll 731 . . . . . . . 8  |-  ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  ->  R  Or  A )
5 sotrieq 4490 . . . . . . . . 9  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  b  e.  A
) )  ->  (
a  =  b  <->  -.  (
a R b  \/  b R a ) ) )
65con2bid 320 . . . . . . . 8  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  b  e.  A
) )  ->  (
( a R b  \/  b R a )  <->  -.  a  =  b ) )
74, 6sylan 458 . . . . . . 7  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( ( a R b  \/  b R a )  <->  -.  a  =  b ) )
8 simprr 734 . . . . . . . . . 10  |-  ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) )
9 breq1 4175 . . . . . . . . . . . . 13  |-  ( x  =  a  ->  (
x R y  <->  a R
y ) )
10 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( x  =  a  ->  ( H `  x )  =  ( H `  a ) )
1110breq1d 4182 . . . . . . . . . . . . 13  |-  ( x  =  a  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  a ) S ( H `  y ) ) )
129, 11imbi12d 312 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
( x R y  ->  ( H `  x ) S ( H `  y ) )  <->  ( a R y  ->  ( H `  a ) S ( H `  y ) ) ) )
13 breq2 4176 . . . . . . . . . . . . 13  |-  ( y  =  b  ->  (
a R y  <->  a R
b ) )
14 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( y  =  b  ->  ( H `  y )  =  ( H `  b ) )
1514breq2d 4184 . . . . . . . . . . . . 13  |-  ( y  =  b  ->  (
( H `  a
) S ( H `
 y )  <->  ( H `  a ) S ( H `  b ) ) )
1613, 15imbi12d 312 . . . . . . . . . . . 12  |-  ( y  =  b  ->  (
( a R y  ->  ( H `  a ) S ( H `  y ) )  <->  ( a R b  ->  ( H `  a ) S ( H `  b ) ) ) )
1712, 16rspc2va 3019 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A
)  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) )  ->  ( a R b  ->  ( H `  a ) S ( H `  b ) ) )
1817ancoms 440 . . . . . . . . . 10  |-  ( ( A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( a R b  ->  ( H `  a ) S ( H `  b ) ) )
198, 18sylan 458 . . . . . . . . 9  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( a R b  ->  ( H `  a ) S ( H `  b ) ) )
20 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  ->  S  Po  B )
21 simplrl 737 . . . . . . . . . . . . 13  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  ->  H : A -onto-> B )
2221, 2syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  ->  H : A --> B )
23 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
b  e.  A )
2422, 23ffvelrnd 5830 . . . . . . . . . . 11  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( H `  b
)  e.  B )
25 poirr 4474 . . . . . . . . . . . 12  |-  ( ( S  Po  B  /\  ( H `  b )  e.  B )  ->  -.  ( H `  b
) S ( H `
 b ) )
26 breq1 4175 . . . . . . . . . . . . 13  |-  ( ( H `  a )  =  ( H `  b )  ->  (
( H `  a
) S ( H `
 b )  <->  ( H `  b ) S ( H `  b ) ) )
2726notbid 286 . . . . . . . . . . . 12  |-  ( ( H `  a )  =  ( H `  b )  ->  ( -.  ( H `  a
) S ( H `
 b )  <->  -.  ( H `  b ) S ( H `  b ) ) )
2825, 27syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( S  Po  B  /\  ( H `  b )  e.  B )  -> 
( ( H `  a )  =  ( H `  b )  ->  -.  ( H `  a ) S ( H `  b ) ) )
2920, 24, 28syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( ( H `  a )  =  ( H `  b )  ->  -.  ( H `  a ) S ( H `  b ) ) )
3029con2d 109 . . . . . . . . 9  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( ( H `  a ) S ( H `  b )  ->  -.  ( H `  a )  =  ( H `  b ) ) )
3119, 30syld 42 . . . . . . . 8  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( a R b  ->  -.  ( H `  a )  =  ( H `  b ) ) )
32 breq1 4175 . . . . . . . . . . . . . 14  |-  ( x  =  b  ->  (
x R y  <->  b R
y ) )
33 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( x  =  b  ->  ( H `  x )  =  ( H `  b ) )
3433breq1d 4182 . . . . . . . . . . . . . 14  |-  ( x  =  b  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  b ) S ( H `  y ) ) )
3532, 34imbi12d 312 . . . . . . . . . . . . 13  |-  ( x  =  b  ->  (
( x R y  ->  ( H `  x ) S ( H `  y ) )  <->  ( b R y  ->  ( H `  b ) S ( H `  y ) ) ) )
36 breq2 4176 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  (
b R y  <->  b R
a ) )
37 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( y  =  a  ->  ( H `  y )  =  ( H `  a ) )
3837breq2d 4184 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  (
( H `  b
) S ( H `
 y )  <->  ( H `  b ) S ( H `  a ) ) )
3936, 38imbi12d 312 . . . . . . . . . . . . 13  |-  ( y  =  a  ->  (
( b R y  ->  ( H `  b ) S ( H `  y ) )  <->  ( b R a  ->  ( H `  b ) S ( H `  a ) ) ) )
4035, 39rspc2va 3019 . . . . . . . . . . . 12  |-  ( ( ( b  e.  A  /\  a  e.  A
)  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) )  ->  ( b R a  ->  ( H `  b ) S ( H `  a ) ) )
4140ancoms 440 . . . . . . . . . . 11  |-  ( ( A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) )  /\  ( b  e.  A  /\  a  e.  A ) )  -> 
( b R a  ->  ( H `  b ) S ( H `  a ) ) )
4241ancom2s 778 . . . . . . . . . 10  |-  ( ( A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( b R a  ->  ( H `  b ) S ( H `  a ) ) )
438, 42sylan 458 . . . . . . . . 9  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( b R a  ->  ( H `  b ) S ( H `  a ) ) )
44 breq2 4176 . . . . . . . . . . . . 13  |-  ( ( H `  a )  =  ( H `  b )  ->  (
( H `  b
) S ( H `
 a )  <->  ( H `  b ) S ( H `  b ) ) )
4544notbid 286 . . . . . . . . . . . 12  |-  ( ( H `  a )  =  ( H `  b )  ->  ( -.  ( H `  b
) S ( H `
 a )  <->  -.  ( H `  b ) S ( H `  b ) ) )
4625, 45syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( S  Po  B  /\  ( H `  b )  e.  B )  -> 
( ( H `  a )  =  ( H `  b )  ->  -.  ( H `  b ) S ( H `  a ) ) )
4720, 24, 46syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( ( H `  a )  =  ( H `  b )  ->  -.  ( H `  b ) S ( H `  a ) ) )
4847con2d 109 . . . . . . . . 9  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( ( H `  b ) S ( H `  a )  ->  -.  ( H `  a )  =  ( H `  b ) ) )
4943, 48syld 42 . . . . . . . 8  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( b R a  ->  -.  ( H `  a )  =  ( H `  b ) ) )
5031, 49jaod 370 . . . . . . 7  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( ( a R b  \/  b R a )  ->  -.  ( H `  a )  =  ( H `  b ) ) )
517, 50sylbird 227 . . . . . 6  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( -.  a  =  b  ->  -.  ( H `  a )  =  ( H `  b ) ) )
5251con4d 99 . . . . 5  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( ( H `  a )  =  ( H `  b )  ->  a  =  b ) )
5352ralrimivva 2758 . . . 4  |-  ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  ->  A. a  e.  A  A. b  e.  A  ( ( H `  a )  =  ( H `  b )  ->  a  =  b ) )
54 dff13 5963 . . . 4  |-  ( H : A -1-1-> B  <->  ( H : A --> B  /\  A. a  e.  A  A. b  e.  A  (
( H `  a
)  =  ( H `
 b )  -> 
a  =  b ) ) )
553, 53, 54sylanbrc 646 . . 3  |-  ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  ->  H : A -1-1-> B )
56 df-f1o 5420 . . 3  |-  ( H : A -1-1-onto-> B  <->  ( H : A -1-1-> B  /\  H : A -onto-> B ) )
5755, 1, 56sylanbrc 646 . 2  |-  ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  ->  H : A
-1-1-onto-> B )
58 sotric 4489 . . . . . . 7  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  b  e.  A
) )  ->  (
a R b  <->  -.  (
a  =  b  \/  b R a ) ) )
5958con2bid 320 . . . . . 6  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  b  e.  A
) )  ->  (
( a  =  b  \/  b R a )  <->  -.  a R
b ) )
604, 59sylan 458 . . . . 5  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( ( a  =  b  \/  b R a )  <->  -.  a R b ) )
61 fveq2 5687 . . . . . . . . . 10  |-  ( a  =  b  ->  ( H `  a )  =  ( H `  b ) )
6261breq1d 4182 . . . . . . . . 9  |-  ( a  =  b  ->  (
( H `  a
) S ( H `
 b )  <->  ( H `  b ) S ( H `  b ) ) )
6362notbid 286 . . . . . . . 8  |-  ( a  =  b  ->  ( -.  ( H `  a
) S ( H `
 b )  <->  -.  ( H `  b ) S ( H `  b ) ) )
6425, 63syl5ibrcom 214 . . . . . . 7  |-  ( ( S  Po  B  /\  ( H `  b )  e.  B )  -> 
( a  =  b  ->  -.  ( H `  a ) S ( H `  b ) ) )
6520, 24, 64syl2anc 643 . . . . . 6  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( a  =  b  ->  -.  ( H `  a ) S ( H `  b ) ) )
66 simprl 733 . . . . . . . . 9  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
a  e.  A )
6722, 66ffvelrnd 5830 . . . . . . . 8  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( H `  a
)  e.  B )
68 po2nr 4476 . . . . . . . . 9  |-  ( ( S  Po  B  /\  ( ( H `  b )  e.  B  /\  ( H `  a
)  e.  B ) )  ->  -.  (
( H `  b
) S ( H `
 a )  /\  ( H `  a ) S ( H `  b ) ) )
69 imnan 412 . . . . . . . . 9  |-  ( ( ( H `  b
) S ( H `
 a )  ->  -.  ( H `  a
) S ( H `
 b ) )  <->  -.  ( ( H `  b ) S ( H `  a )  /\  ( H `  a ) S ( H `  b ) ) )
7068, 69sylibr 204 . . . . . . . 8  |-  ( ( S  Po  B  /\  ( ( H `  b )  e.  B  /\  ( H `  a
)  e.  B ) )  ->  ( ( H `  b ) S ( H `  a )  ->  -.  ( H `  a ) S ( H `  b ) ) )
7120, 24, 67, 70syl12anc 1182 . . . . . . 7  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( ( H `  b ) S ( H `  a )  ->  -.  ( H `  a ) S ( H `  b ) ) )
7243, 71syld 42 . . . . . 6  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( b R a  ->  -.  ( H `  a ) S ( H `  b ) ) )
7365, 72jaod 370 . . . . 5  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( ( a  =  b  \/  b R a )  ->  -.  ( H `  a ) S ( H `  b ) ) )
7460, 73sylbird 227 . . . 4  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( -.  a R b  ->  -.  ( H `  a ) S ( H `  b ) ) )
7519, 74impcon4bid 197 . . 3  |-  ( ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  /\  ( a  e.  A  /\  b  e.  A ) )  -> 
( a R b  <-> 
( H `  a
) S ( H `
 b ) ) )
7675ralrimivva 2758 . 2  |-  ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  ->  A. a  e.  A  A. b  e.  A  ( a R b  <->  ( H `  a ) S ( H `  b ) ) )
77 df-isom 5422 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. a  e.  A  A. b  e.  A  ( a R b  <-> 
( H `  a
) S ( H `
 b ) ) ) )
7857, 76, 77sylanbrc 646 1  |-  ( ( ( R  Or  A  /\  S  Po  B
)  /\  ( H : A -onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( H `  x ) S ( H `  y ) ) ) )  ->  H  Isom  R ,  S  ( A ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   class class class wbr 4172    Po wpo 4461    Or wor 4462   -->wf 5409   -1-1->wf1 5410   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413    Isom wiso 5414
This theorem is referenced by:  ordtypelem8  7450  cantnf  7605  fin23lem27  8164  iccpnfhmeo  18923  xrhmeo  18924  logccv  20507  xrge0iifiso  24274
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422
  Copyright terms: Public domain W3C validator