MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sofld Structured version   Visualization version   Unicode version

Theorem sofld 5290
Description: The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
sofld  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A )  /\  R  =/=  (/) )  ->  A  =  ( dom  R  u.  ran  R ) )

Proof of Theorem sofld
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4947 . . . . . . . . 9  |-  Rel  ( A  X.  A )
2 relss 4927 . . . . . . . . 9  |-  ( R 
C_  ( A  X.  A )  ->  ( Rel  ( A  X.  A
)  ->  Rel  R ) )
31, 2mpi 20 . . . . . . . 8  |-  ( R 
C_  ( A  X.  A )  ->  Rel  R )
43ad2antlr 741 . . . . . . 7  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  -.  A  C_  ( dom  R  u.  ran  R ) )  ->  Rel  R )
5 df-br 4396 . . . . . . . . . 10  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
6 ssun1 3588 . . . . . . . . . . . . 13  |-  A  C_  ( A  u.  { x } )
7 undif1 3833 . . . . . . . . . . . . 13  |-  ( ( A  \  { x } )  u.  {
x } )  =  ( A  u.  {
x } )
86, 7sseqtr4i 3451 . . . . . . . . . . . 12  |-  A  C_  ( ( A  \  { x } )  u.  { x }
)
9 simpll 768 . . . . . . . . . . . . . 14  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  R  Or  A )
10 dmss 5039 . . . . . . . . . . . . . . . . 17  |-  ( R 
C_  ( A  X.  A )  ->  dom  R 
C_  dom  ( A  X.  A ) )
11 dmxpid 5060 . . . . . . . . . . . . . . . . 17  |-  dom  ( A  X.  A )  =  A
1210, 11syl6sseq 3464 . . . . . . . . . . . . . . . 16  |-  ( R 
C_  ( A  X.  A )  ->  dom  R 
C_  A )
1312ad2antlr 741 . . . . . . . . . . . . . . 15  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  dom  R  C_  A )
143ad2antlr 741 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  Rel  R )
15 releldm 5073 . . . . . . . . . . . . . . . 16  |-  ( ( Rel  R  /\  x R y )  ->  x  e.  dom  R )
1614, 15sylancom 680 . . . . . . . . . . . . . . 15  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  x  e.  dom  R )
1713, 16sseldd 3419 . . . . . . . . . . . . . 14  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  x  e.  A )
18 sossfld 5289 . . . . . . . . . . . . . 14  |-  ( ( R  Or  A  /\  x  e.  A )  ->  ( A  \  {
x } )  C_  ( dom  R  u.  ran  R ) )
199, 17, 18syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  ( A  \  { x } ) 
C_  ( dom  R  u.  ran  R ) )
20 ssun1 3588 . . . . . . . . . . . . . . 15  |-  dom  R  C_  ( dom  R  u.  ran  R )
2120, 16sseldi 3416 . . . . . . . . . . . . . 14  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  x  e.  ( dom  R  u.  ran  R ) )
2221snssd 4108 . . . . . . . . . . . . 13  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  { x }  C_  ( dom  R  u.  ran  R ) )
2319, 22unssd 3601 . . . . . . . . . . . 12  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  ( ( A  \  { x }
)  u.  { x } )  C_  ( dom  R  u.  ran  R
) )
248, 23syl5ss 3429 . . . . . . . . . . 11  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  A  C_  ( dom  R  u.  ran  R
) )
2524ex 441 . . . . . . . . . 10  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  -> 
( x R y  ->  A  C_  ( dom  R  u.  ran  R
) ) )
265, 25syl5bir 226 . . . . . . . . 9  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  -> 
( <. x ,  y
>.  e.  R  ->  A  C_  ( dom  R  u.  ran  R ) ) )
2726con3dimp 448 . . . . . . . 8  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  -.  A  C_  ( dom  R  u.  ran  R ) )  ->  -.  <.
x ,  y >.  e.  R )
2827pm2.21d 109 . . . . . . 7  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  -.  A  C_  ( dom  R  u.  ran  R ) )  ->  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  (/) ) )
294, 28relssdv 4932 . . . . . 6  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  -.  A  C_  ( dom  R  u.  ran  R ) )  ->  R  C_  (/) )
30 ss0 3768 . . . . . 6  |-  ( R 
C_  (/)  ->  R  =  (/) )
3129, 30syl 17 . . . . 5  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  -.  A  C_  ( dom  R  u.  ran  R ) )  ->  R  =  (/) )
3231ex 441 . . . 4  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  -> 
( -.  A  C_  ( dom  R  u.  ran  R )  ->  R  =  (/) ) )
3332necon1ad 2660 . . 3  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  -> 
( R  =/=  (/)  ->  A  C_  ( dom  R  u.  ran  R ) ) )
34333impia 1228 . 2  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A )  /\  R  =/=  (/) )  ->  A  C_  ( dom  R  u.  ran  R ) )
35 rnss 5069 . . . . 5  |-  ( R 
C_  ( A  X.  A )  ->  ran  R 
C_  ran  ( A  X.  A ) )
36 rnxpid 5276 . . . . 5  |-  ran  ( A  X.  A )  =  A
3735, 36syl6sseq 3464 . . . 4  |-  ( R 
C_  ( A  X.  A )  ->  ran  R 
C_  A )
3812, 37unssd 3601 . . 3  |-  ( R 
C_  ( A  X.  A )  ->  ( dom  R  u.  ran  R
)  C_  A )
39383ad2ant2 1052 . 2  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A )  /\  R  =/=  (/) )  ->  ( dom  R  u.  ran  R
)  C_  A )
4034, 39eqssd 3435 1  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A )  /\  R  =/=  (/) )  ->  A  =  ( dom  R  u.  ran  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641    \ cdif 3387    u. cun 3388    C_ wss 3390   (/)c0 3722   {csn 3959   <.cop 3965   class class class wbr 4395    Or wor 4759    X. cxp 4837   dom cdm 4839   ran crn 4840   Rel wrel 4844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-opab 4455  df-po 4760  df-so 4761  df-xp 4845  df-rel 4846  df-cnv 4847  df-dm 4849  df-rn 4850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator