MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sofld Structured version   Visualization version   Unicode version

Theorem sofld 5283
Description: The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
sofld  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A )  /\  R  =/=  (/) )  ->  A  =  ( dom  R  u.  ran  R ) )

Proof of Theorem sofld
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4941 . . . . . . . . 9  |-  Rel  ( A  X.  A )
2 relss 4921 . . . . . . . . 9  |-  ( R 
C_  ( A  X.  A )  ->  ( Rel  ( A  X.  A
)  ->  Rel  R ) )
31, 2mpi 20 . . . . . . . 8  |-  ( R 
C_  ( A  X.  A )  ->  Rel  R )
43ad2antlr 732 . . . . . . 7  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  -.  A  C_  ( dom  R  u.  ran  R ) )  ->  Rel  R )
5 df-br 4402 . . . . . . . . . 10  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
6 ssun1 3596 . . . . . . . . . . . . 13  |-  A  C_  ( A  u.  { x } )
7 undif1 3841 . . . . . . . . . . . . 13  |-  ( ( A  \  { x } )  u.  {
x } )  =  ( A  u.  {
x } )
86, 7sseqtr4i 3464 . . . . . . . . . . . 12  |-  A  C_  ( ( A  \  { x } )  u.  { x }
)
9 simpll 759 . . . . . . . . . . . . . 14  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  R  Or  A )
10 dmss 5033 . . . . . . . . . . . . . . . . 17  |-  ( R 
C_  ( A  X.  A )  ->  dom  R 
C_  dom  ( A  X.  A ) )
11 dmxpid 5053 . . . . . . . . . . . . . . . . 17  |-  dom  ( A  X.  A )  =  A
1210, 11syl6sseq 3477 . . . . . . . . . . . . . . . 16  |-  ( R 
C_  ( A  X.  A )  ->  dom  R 
C_  A )
1312ad2antlr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  dom  R  C_  A )
143ad2antlr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  Rel  R )
15 releldm 5066 . . . . . . . . . . . . . . . 16  |-  ( ( Rel  R  /\  x R y )  ->  x  e.  dom  R )
1614, 15sylancom 672 . . . . . . . . . . . . . . 15  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  x  e.  dom  R )
1713, 16sseldd 3432 . . . . . . . . . . . . . 14  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  x  e.  A )
18 sossfld 5282 . . . . . . . . . . . . . 14  |-  ( ( R  Or  A  /\  x  e.  A )  ->  ( A  \  {
x } )  C_  ( dom  R  u.  ran  R ) )
199, 17, 18syl2anc 666 . . . . . . . . . . . . 13  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  ( A  \  { x } ) 
C_  ( dom  R  u.  ran  R ) )
20 ssun1 3596 . . . . . . . . . . . . . . 15  |-  dom  R  C_  ( dom  R  u.  ran  R )
2120, 16sseldi 3429 . . . . . . . . . . . . . 14  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  x  e.  ( dom  R  u.  ran  R ) )
2221snssd 4116 . . . . . . . . . . . . 13  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  { x }  C_  ( dom  R  u.  ran  R ) )
2319, 22unssd 3609 . . . . . . . . . . . 12  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  ( ( A  \  { x }
)  u.  { x } )  C_  ( dom  R  u.  ran  R
) )
248, 23syl5ss 3442 . . . . . . . . . . 11  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  x R y )  ->  A  C_  ( dom  R  u.  ran  R
) )
2524ex 436 . . . . . . . . . 10  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  -> 
( x R y  ->  A  C_  ( dom  R  u.  ran  R
) ) )
265, 25syl5bir 222 . . . . . . . . 9  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  -> 
( <. x ,  y
>.  e.  R  ->  A  C_  ( dom  R  u.  ran  R ) ) )
2726con3dimp 443 . . . . . . . 8  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  -.  A  C_  ( dom  R  u.  ran  R ) )  ->  -.  <.
x ,  y >.  e.  R )
2827pm2.21d 110 . . . . . . 7  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  -.  A  C_  ( dom  R  u.  ran  R ) )  ->  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  (/) ) )
294, 28relssdv 4926 . . . . . 6  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  -.  A  C_  ( dom  R  u.  ran  R ) )  ->  R  C_  (/) )
30 ss0 3764 . . . . . 6  |-  ( R 
C_  (/)  ->  R  =  (/) )
3129, 30syl 17 . . . . 5  |-  ( ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  /\  -.  A  C_  ( dom  R  u.  ran  R ) )  ->  R  =  (/) )
3231ex 436 . . . 4  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  -> 
( -.  A  C_  ( dom  R  u.  ran  R )  ->  R  =  (/) ) )
3332necon1ad 2640 . . 3  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A ) )  -> 
( R  =/=  (/)  ->  A  C_  ( dom  R  u.  ran  R ) ) )
34333impia 1204 . 2  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A )  /\  R  =/=  (/) )  ->  A  C_  ( dom  R  u.  ran  R ) )
35 rnss 5062 . . . . 5  |-  ( R 
C_  ( A  X.  A )  ->  ran  R 
C_  ran  ( A  X.  A ) )
36 rnxpid 5269 . . . . 5  |-  ran  ( A  X.  A )  =  A
3735, 36syl6sseq 3477 . . . 4  |-  ( R 
C_  ( A  X.  A )  ->  ran  R 
C_  A )
3812, 37unssd 3609 . . 3  |-  ( R 
C_  ( A  X.  A )  ->  ( dom  R  u.  ran  R
)  C_  A )
39383ad2ant2 1029 . 2  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A )  /\  R  =/=  (/) )  ->  ( dom  R  u.  ran  R
)  C_  A )
4034, 39eqssd 3448 1  |-  ( ( R  Or  A  /\  R  C_  ( A  X.  A )  /\  R  =/=  (/) )  ->  A  =  ( dom  R  u.  ran  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621    \ cdif 3400    u. cun 3401    C_ wss 3403   (/)c0 3730   {csn 3967   <.cop 3973   class class class wbr 4401    Or wor 4753    X. cxp 4831   dom cdm 4833   ran crn 4834   Rel wrel 4838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pr 4638
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-sn 3968  df-pr 3970  df-op 3974  df-br 4402  df-opab 4461  df-po 4754  df-so 4755  df-xp 4839  df-rel 4840  df-cnv 4841  df-dm 4843  df-rn 4844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator