Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  soeq2 Structured version   Unicode version

Theorem soeq2 4770
 Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq2

Proof of Theorem soeq2
StepHypRef Expression
1 soss 4768 . . . 4
2 soss 4768 . . . 4
31, 2anim12i 566 . . 3
4 eqss 3480 . . 3
5 dfbi2 628 . . 3
63, 4, 53imtr4i 266 . 2
76bicomd 201 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1370   wss 3437   wor 4749 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2804  df-in 3444  df-ss 3451  df-po 4750  df-so 4751 This theorem is referenced by:  weeq2  4818  wemapso2  7880  oemapso  8002  fin2i  8576  isfin2-2  8600  fin1a2lem10  8690  zorn2lem7  8783  zornn0g  8786  opsrtoslem2  17691  sltsolem1  27954  soeq12d  29539  aomclem1  29556
 Copyright terms: Public domain W3C validator