MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snwf Structured version   Unicode version

Theorem snwf 8218
Description: A singleton is well-founded if its element is. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
snwf  |-  ( A  e.  U. ( R1
" On )  ->  { A }  e.  U. ( R1 " On ) )

Proof of Theorem snwf
StepHypRef Expression
1 pwwf 8216 . 2  |-  ( A  e.  U. ( R1
" On )  <->  ~P A  e.  U. ( R1 " On ) )
2 snsspw 4187 . . 3  |-  { A }  C_  ~P A
3 sswf 8217 . . 3  |-  ( ( ~P A  e.  U. ( R1 " On )  /\  { A }  C_ 
~P A )  ->  { A }  e.  U. ( R1 " On ) )
42, 3mpan2 669 . 2  |-  ( ~P A  e.  U. ( R1 " On )  ->  { A }  e.  U. ( R1 " On ) )
51, 4sylbi 195 1  |-  ( A  e.  U. ( R1
" On )  ->  { A }  e.  U. ( R1 " On ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1823    C_ wss 3461   ~Pcpw 3999   {csn 4016   U.cuni 4235   Oncon0 4867   "cima 4991   R1cr1 8171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-om 6674  df-recs 7034  df-rdg 7068  df-r1 8173  df-rank 8174
This theorem is referenced by:  prwf  8220  opwf  8221  ranksnb  8236  rankprb  8260  rankopb  8261  rankcf  9144  rankaltopb  29860
  Copyright terms: Public domain W3C validator