MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snunico Structured version   Unicode version

Theorem snunico 11433
Description: The closure of the open end of a right-open real interval. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
snunico  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A [,) B
)  u.  { B } )  =  ( A [,] B ) )

Proof of Theorem snunico
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 989 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  RR* )
2 iccid 11366 . . . 4  |-  ( B  e.  RR*  ->  ( B [,] B )  =  { B } )
31, 2syl 16 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( B [,] B )  =  { B } )
43uneq2d 3531 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A [,) B
)  u.  ( B [,] B ) )  =  ( ( A [,) B )  u. 
{ B } ) )
5 simp1 988 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  RR* )
6 simp3 990 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  <_  B )
7 xrleid 11148 . . . 4  |-  ( B  e.  RR*  ->  B  <_  B )
81, 7syl 16 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  <_  B )
9 df-ico 11327 . . . 4  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
10 df-icc 11328 . . . 4  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
11 xrlenlt 9463 . . . 4  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B  <_  w  <->  -.  w  <  B ) )
12 xrltle 11147 . . . . . 6  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <  B  ->  w  <_  B ) )
13123adant3 1008 . . . . 5  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  B  e. 
RR* )  ->  (
w  <  B  ->  w  <_  B ) )
1413adantrd 468 . . . 4  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  B  e. 
RR* )  ->  (
( w  <  B  /\  B  <_  B )  ->  w  <_  B
) )
15 xrletr 11153 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  w )  ->  A  <_  w
) )
169, 10, 11, 10, 14, 15ixxun 11337 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  B  /\  B  <_  B ) )  -> 
( ( A [,) B )  u.  ( B [,] B ) )  =  ( A [,] B ) )
175, 1, 1, 6, 8, 16syl32anc 1226 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A [,) B
)  u.  ( B [,] B ) )  =  ( A [,] B ) )
184, 17eqtr3d 2477 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A [,) B
)  u.  { B } )  =  ( A [,] B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    = wceq 1369    e. wcel 1756    u. cun 3347   {csn 3898   class class class wbr 4313  (class class class)co 6112   RR*cxr 9438    < clt 9439    <_ cle 9440   [,)cico 11323   [,]cicc 11324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-pre-lttri 9377  ax-pre-lttrn 9378
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-po 4662  df-so 4663  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-ico 11327  df-icc 11328
This theorem is referenced by:  prunioo  11435  iccpnfcnv  20538  iccpnfhmeo  20539  xrge0iifcnv  26385
  Copyright terms: Public domain W3C validator