Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlff Structured version   Unicode version

Theorem snmlff 27233
Description: The function  F from snmlval 27235 is a mapping from positive integers to real numbers in the range 
[ 0 ,  1 ]. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f  |-  F  =  ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
Assertion
Ref Expression
snmlff  |-  F : NN
--> ( 0 [,] 1
)
Distinct variable groups:    A, n    B, n    k, n    R, n
Allowed substitution hints:    A( k)    B( k)    R( k)    F( k, n)

Proof of Theorem snmlff
StepHypRef Expression
1 snmlff.f . 2  |-  F  =  ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
2 fzfid 11810 . . . . . . 7  |-  ( n  e.  NN  ->  (
1 ... n )  e. 
Fin )
3 ssrab2 3452 . . . . . . 7  |-  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  C_  ( 1 ... n
)
4 ssfi 7548 . . . . . . 7  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  C_  ( 1 ... n
) )  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin )
52, 3, 4sylancl 662 . . . . . 6  |-  ( n  e.  NN  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin )
6 hashcl 12141 . . . . . 6  |-  ( { k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin  ->  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  NN0 )
75, 6syl 16 . . . . 5  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  e. 
NN0 )
87nn0red 10652 . . . 4  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  e.  RR )
9 nndivre 10372 . . . 4  |-  ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  RR  /\  n  e.  NN )  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  RR )
108, 9mpancom 669 . . 3  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  RR )
117nn0ge0d 10654 . . . 4  |-  ( n  e.  NN  ->  0  <_  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } ) )
12 nnre 10344 . . . 4  |-  ( n  e.  NN  ->  n  e.  RR )
13 nngt0 10366 . . . 4  |-  ( n  e.  NN  ->  0  <  n )
14 divge0 10213 . . . 4  |-  ( ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  RR  /\  0  <_  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } ) )  /\  ( n  e.  RR  /\  0  <  n ) )  -> 
0  <_  ( ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  /  n ) )
158, 11, 12, 13, 14syl22anc 1219 . . 3  |-  ( n  e.  NN  ->  0  <_  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
16 ssdomg 7370 . . . . . . . 8  |-  ( ( 1 ... n )  e.  Fin  ->  ( { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  C_  ( 1 ... n
)  ->  { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B }  ~<_  ( 1 ... n ) ) )
172, 3, 16mpisyl 18 . . . . . . 7  |-  ( n  e.  NN  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  ~<_  ( 1 ... n ) )
18 hashdom 12157 . . . . . . . 8  |-  ( ( { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin  /\  ( 1 ... n )  e. 
Fin )  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( # `  (
1 ... n ) )  <->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  ~<_  ( 1 ... n
) ) )
195, 2, 18syl2anc 661 . . . . . . 7  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( # `  (
1 ... n ) )  <->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  ~<_  ( 1 ... n
) ) )
2017, 19mpbird 232 . . . . . 6  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  <_ 
( # `  ( 1 ... n ) ) )
21 nnnn0 10601 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  NN0 )
22 hashfz1 12132 . . . . . . 7  |-  ( n  e.  NN0  ->  ( # `  ( 1 ... n
) )  =  n )
2321, 22syl 16 . . . . . 6  |-  ( n  e.  NN  ->  ( # `
 ( 1 ... n ) )  =  n )
2420, 23breqtrd 4331 . . . . 5  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  <_  n )
25 nncn 10345 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  CC )
2625mulid1d 9418 . . . . 5  |-  ( n  e.  NN  ->  (
n  x.  1 )  =  n )
2724, 26breqtrrd 4333 . . . 4  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  <_ 
( n  x.  1 ) )
28 1re 9400 . . . . . 6  |-  1  e.  RR
2928a1i 11 . . . . 5  |-  ( n  e.  NN  ->  1  e.  RR )
30 ledivmul 10220 . . . . 5  |-  ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  RR  /\  1  e.  RR  /\  ( n  e.  RR  /\  0  <  n ) )  -> 
( ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }
)  /  n )  <_  1  <->  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( n  x.  1 ) ) )
318, 29, 12, 13, 30syl112anc 1222 . . . 4  |-  ( n  e.  NN  ->  (
( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  <_ 
1  <->  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( n  x.  1 ) ) )
3227, 31mpbird 232 . . 3  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  <_ 
1 )
33 0re 9401 . . . 4  |-  0  e.  RR
3433, 28elicc2i 11376 . . 3  |-  ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  ( 0 [,] 1
)  <->  ( ( (
# `  { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  /  n )  e.  RR  /\  0  <_  ( ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  /  n )  /\  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  <_ 
1 ) )
3510, 15, 32, 34syl3anbrc 1172 . 2  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  ( 0 [,] 1
) )
361, 35fmpti 5881 1  |-  F : NN
--> ( 0 [,] 1
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1369    e. wcel 1756   {crab 2734    C_ wss 3343   class class class wbr 4307    e. cmpt 4365   -->wf 5429   ` cfv 5433  (class class class)co 6106    ~<_ cdom 7323   Fincfn 7325   RRcr 9296   0cc0 9297   1c1 9298    x. cmul 9302    < clt 9433    <_ cle 9434    / cdiv 10008   NNcn 10337   NN0cn0 10594   [,]cicc 11318   ...cfz 11452   |_cfl 11655    mod cmo 11723   ^cexp 11880   #chash 12118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-1o 6935  df-oadd 6939  df-er 7116  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-card 8124  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-div 10009  df-nn 10338  df-n0 10595  df-z 10662  df-uz 10877  df-icc 11322  df-fz 11453  df-hash 12119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator