MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snfil Structured version   Visualization version   Unicode version

Theorem snfil 20879
Description: A singleton is a filter. Example 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
snfil  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  { A }  e.  ( Fil `  A ) )

Proof of Theorem snfil
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elsn 3982 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
2 eqimss 3484 . . . . 5  |-  ( x  =  A  ->  x  C_  A )
32pm4.71ri 639 . . . 4  |-  ( x  =  A  <->  ( x  C_  A  /\  x  =  A ) )
41, 3bitri 253 . . 3  |-  ( x  e.  { A }  <->  ( x  C_  A  /\  x  =  A )
)
54a1i 11 . 2  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  (
x  e.  { A } 
<->  ( x  C_  A  /\  x  =  A
) ) )
6 elex 3054 . . 3  |-  ( A  e.  B  ->  A  e.  _V )
76adantr 467 . 2  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  A  e.  _V )
8 eqid 2451 . . . 4  |-  A  =  A
9 eqsbc3 3307 . . . 4  |-  ( A  e.  B  ->  ( [. A  /  x ]. x  =  A  <->  A  =  A ) )
108, 9mpbiri 237 . . 3  |-  ( A  e.  B  ->  [. A  /  x ]. x  =  A )
1110adantr 467 . 2  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  [. A  /  x ]. x  =  A )
12 simpr 463 . . . . 5  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  A  =/=  (/) )
1312necomd 2679 . . . 4  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  (/)  =/=  A
)
1413neneqd 2629 . . 3  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  -.  (/)  =  A )
15 0ex 4535 . . . 4  |-  (/)  e.  _V
16 eqsbc3 3307 . . . 4  |-  ( (/)  e.  _V  ->  ( [. (/)  /  x ]. x  =  A  <->  (/)  =  A ) )
1715, 16ax-mp 5 . . 3  |-  ( [. (/)  /  x ]. x  =  A  <->  (/)  =  A )
1814, 17sylnibr 307 . 2  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  -.  [. (/)  /  x ]. x  =  A )
19 sseq1 3453 . . . . . . 7  |-  ( x  =  A  ->  (
x  C_  y  <->  A  C_  y
) )
2019anbi2d 710 . . . . . 6  |-  ( x  =  A  ->  (
( y  C_  A  /\  x  C_  y )  <-> 
( y  C_  A  /\  A  C_  y ) ) )
21 eqss 3447 . . . . . . 7  |-  ( y  =  A  <->  ( y  C_  A  /\  A  C_  y ) )
2221biimpri 210 . . . . . 6  |-  ( ( y  C_  A  /\  A  C_  y )  -> 
y  =  A )
2320, 22syl6bi 232 . . . . 5  |-  ( x  =  A  ->  (
( y  C_  A  /\  x  C_  y )  ->  y  =  A ) )
2423com12 32 . . . 4  |-  ( ( y  C_  A  /\  x  C_  y )  -> 
( x  =  A  ->  y  =  A ) )
25243adant1 1026 . . 3  |-  ( ( ( A  e.  B  /\  A  =/=  (/) )  /\  y  C_  A  /\  x  C_  y )  ->  (
x  =  A  -> 
y  =  A ) )
26 sbcid 3284 . . 3  |-  ( [. x  /  x ]. x  =  A  <->  x  =  A
)
27 vex 3048 . . . 4  |-  y  e. 
_V
28 eqsbc3 3307 . . . 4  |-  ( y  e.  _V  ->  ( [. y  /  x ]. x  =  A  <->  y  =  A ) )
2927, 28ax-mp 5 . . 3  |-  ( [. y  /  x ]. x  =  A  <->  y  =  A )
3025, 26, 293imtr4g 274 . 2  |-  ( ( ( A  e.  B  /\  A  =/=  (/) )  /\  y  C_  A  /\  x  C_  y )  ->  ( [. x  /  x ]. x  =  A  ->  [. y  /  x ]. x  =  A
) )
31 ineq12 3629 . . . . . 6  |-  ( ( y  =  A  /\  x  =  A )  ->  ( y  i^i  x
)  =  ( A  i^i  A ) )
32 inidm 3641 . . . . . 6  |-  ( A  i^i  A )  =  A
3331, 32syl6eq 2501 . . . . 5  |-  ( ( y  =  A  /\  x  =  A )  ->  ( y  i^i  x
)  =  A )
3429, 26, 33syl2anb 482 . . . 4  |-  ( (
[. y  /  x ]. x  =  A  /\  [. x  /  x ]. x  =  A
)  ->  ( y  i^i  x )  =  A )
3527inex1 4544 . . . . 5  |-  ( y  i^i  x )  e. 
_V
36 eqsbc3 3307 . . . . 5  |-  ( ( y  i^i  x )  e.  _V  ->  ( [. ( y  i^i  x
)  /  x ]. x  =  A  <->  ( y  i^i  x )  =  A ) )
3735, 36ax-mp 5 . . . 4  |-  ( [. ( y  i^i  x
)  /  x ]. x  =  A  <->  ( y  i^i  x )  =  A )
3834, 37sylibr 216 . . 3  |-  ( (
[. y  /  x ]. x  =  A  /\  [. x  /  x ]. x  =  A
)  ->  [. ( y  i^i  x )  /  x ]. x  =  A )
3938a1i 11 . 2  |-  ( ( ( A  e.  B  /\  A  =/=  (/) )  /\  y  C_  A  /\  x  C_  A )  ->  (
( [. y  /  x ]. x  =  A  /\  [. x  /  x ]. x  =  A
)  ->  [. ( y  i^i  x )  /  x ]. x  =  A ) )
405, 7, 11, 18, 30, 39isfild 20873 1  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  { A }  e.  ( Fil `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   _Vcvv 3045   [.wsbc 3267    i^i cin 3403    C_ wss 3404   (/)c0 3731   {csn 3968   ` cfv 5582   Filcfil 20860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fv 5590  df-fbas 18967  df-fil 20861
This theorem is referenced by:  snfbas  20881
  Copyright terms: Public domain W3C validator