MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snclseqg Structured version   Unicode version

Theorem snclseqg 21061
Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
snclseqg.x  |-  X  =  ( Base `  G
)
snclseqg.j  |-  J  =  ( TopOpen `  G )
snclseqg.z  |-  .0.  =  ( 0g `  G )
snclseqg.r  |-  .~  =  ( G ~QG  S )
snclseqg.s  |-  S  =  ( ( cls `  J
) `  {  .0.  }
)
Assertion
Ref Expression
snclseqg  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( cls `  J ) `
 { A }
) )

Proof of Theorem snclseqg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snclseqg.s . . . 4  |-  S  =  ( ( cls `  J
) `  {  .0.  }
)
21imaeq2i 5186 . . 3  |-  ( ( x  e.  X  |->  ( A ( +g  `  G
) x ) )
" S )  =  ( ( x  e.  X  |->  ( A ( +g  `  G ) x ) ) "
( ( cls `  J
) `  {  .0.  }
) )
3 tgpgrp 21024 . . . . 5  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
43adantr 466 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  G  e.  Grp )
5 snclseqg.j . . . . . . . . . 10  |-  J  =  ( TopOpen `  G )
6 snclseqg.x . . . . . . . . . 10  |-  X  =  ( Base `  G
)
75, 6tgptopon 21028 . . . . . . . . 9  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  X ) )
87adantr 466 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  J  e.  (TopOn `  X )
)
9 topontop 19872 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
108, 9syl 17 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  J  e.  Top )
11 snclseqg.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  G )
126, 11grpidcl 16645 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  .0.  e.  X )
134, 12syl 17 . . . . . . . . 9  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  .0.  e.  X )
1413snssd 4148 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  {  .0.  } 
C_  X )
15 toponuni 19873 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
168, 15syl 17 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  X  =  U. J )
1714, 16sseqtrd 3506 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  {  .0.  } 
C_  U. J )
18 eqid 2429 . . . . . . . 8  |-  U. J  =  U. J
1918clsss3 20005 . . . . . . 7  |-  ( ( J  e.  Top  /\  {  .0.  }  C_  U. J
)  ->  ( ( cls `  J ) `  {  .0.  } )  C_  U. J )
2010, 17, 19syl2anc 665 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( cls `  J
) `  {  .0.  }
)  C_  U. J )
2120, 16sseqtr4d 3507 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( cls `  J
) `  {  .0.  }
)  C_  X )
221, 21syl5eqss 3514 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  S  C_  X )
23 simpr 462 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  A  e.  X )
24 snclseqg.r . . . . 5  |-  .~  =  ( G ~QG  S )
25 eqid 2429 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
266, 24, 25eqglact 16819 . . . 4  |-  ( ( G  e.  Grp  /\  S  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A ( +g  `  G
) x ) )
" S ) )
274, 22, 23, 26syl3anc 1264 . . 3  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A ( +g  `  G
) x ) )
" S ) )
28 eqid 2429 . . . . 5  |-  ( x  e.  X  |->  ( A ( +g  `  G
) x ) )  =  ( x  e.  X  |->  ( A ( +g  `  G ) x ) )
2928, 6, 25, 5tgplacthmeo 21049 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
x  e.  X  |->  ( A ( +g  `  G
) x ) )  e.  ( J Homeo J ) )
3018hmeocls 20714 . . . 4  |-  ( ( ( x  e.  X  |->  ( A ( +g  `  G ) x ) )  e.  ( J
Homeo J )  /\  {  .0.  }  C_  U. J )  ->  ( ( cls `  J ) `  (
( x  e.  X  |->  ( A ( +g  `  G ) x ) ) " {  .0.  } ) )  =  ( ( x  e.  X  |->  ( A ( +g  `  G ) x ) ) " ( ( cls `  J ) `
 {  .0.  }
) ) )
3129, 17, 30syl2anc 665 . . 3  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( cls `  J
) `  ( (
x  e.  X  |->  ( A ( +g  `  G
) x ) )
" {  .0.  }
) )  =  ( ( x  e.  X  |->  ( A ( +g  `  G ) x ) ) " ( ( cls `  J ) `
 {  .0.  }
) ) )
322, 27, 313eqtr4a 2496 . 2  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( cls `  J ) `
 ( ( x  e.  X  |->  ( A ( +g  `  G
) x ) )
" {  .0.  }
) ) )
33 df-ima 4867 . . . . 5  |-  ( ( x  e.  X  |->  ( A ( +g  `  G
) x ) )
" {  .0.  }
)  =  ran  (
( x  e.  X  |->  ( A ( +g  `  G ) x ) )  |`  {  .0.  } )
3414resmptd 5176 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( A ( +g  `  G ) x ) )  |`  {  .0.  } )  =  ( x  e.  {  .0.  }  |->  ( A ( +g  `  G ) x ) ) )
3534rneqd 5082 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ran  ( ( x  e.  X  |->  ( A ( +g  `  G ) x ) )  |`  {  .0.  } )  =  ran  ( x  e. 
{  .0.  }  |->  ( A ( +g  `  G
) x ) ) )
3633, 35syl5eq 2482 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( A ( +g  `  G ) x ) ) " {  .0.  } )  =  ran  (
x  e.  {  .0.  } 
|->  ( A ( +g  `  G ) x ) ) )
37 fvex 5891 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
3811, 37eqeltri 2513 . . . . . . . 8  |-  .0.  e.  _V
39 oveq2 6313 . . . . . . . . 9  |-  ( x  =  .0.  ->  ( A ( +g  `  G
) x )  =  ( A ( +g  `  G )  .0.  )
)
4039eqeq2d 2443 . . . . . . . 8  |-  ( x  =  .0.  ->  (
y  =  ( A ( +g  `  G
) x )  <->  y  =  ( A ( +g  `  G
)  .0.  ) ) )
4138, 40rexsn 4042 . . . . . . 7  |-  ( E. x  e.  {  .0.  } y  =  ( A ( +g  `  G
) x )  <->  y  =  ( A ( +g  `  G
)  .0.  ) )
426, 25, 11grprid 16648 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( A ( +g  `  G )  .0.  )  =  A )
433, 42sylan 473 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( A ( +g  `  G
)  .0.  )  =  A )
4443eqeq2d 2443 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
y  =  ( A ( +g  `  G
)  .0.  )  <->  y  =  A ) )
4541, 44syl5bb 260 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( E. x  e.  {  .0.  } y  =  ( A ( +g  `  G
) x )  <->  y  =  A ) )
4645abbidv 2565 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  { y  |  E. x  e. 
{  .0.  } y  =  ( A ( +g  `  G ) x ) }  =  { y  |  y  =  A } )
47 eqid 2429 . . . . . 6  |-  ( x  e.  {  .0.  }  |->  ( A ( +g  `  G ) x ) )  =  ( x  e.  {  .0.  }  |->  ( A ( +g  `  G ) x ) )
4847rnmpt 5100 . . . . 5  |-  ran  (
x  e.  {  .0.  } 
|->  ( A ( +g  `  G ) x ) )  =  { y  |  E. x  e. 
{  .0.  } y  =  ( A ( +g  `  G ) x ) }
49 df-sn 4003 . . . . 5  |-  { A }  =  { y  |  y  =  A }
5046, 48, 493eqtr4g 2495 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ran  ( x  e.  {  .0.  } 
|->  ( A ( +g  `  G ) x ) )  =  { A } )
5136, 50eqtrd 2470 . . 3  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( A ( +g  `  G ) x ) ) " {  .0.  } )  =  { A } )
5251fveq2d 5885 . 2  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( cls `  J
) `  ( (
x  e.  X  |->  ( A ( +g  `  G
) x ) )
" {  .0.  }
) )  =  ( ( cls `  J
) `  { A } ) )
5332, 52eqtrd 2470 1  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( cls `  J ) `
 { A }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   {cab 2414   E.wrex 2783   _Vcvv 3087    C_ wss 3442   {csn 4002   U.cuni 4222    |-> cmpt 4484   ran crn 4855    |` cres 4856   "cima 4857   ` cfv 5601  (class class class)co 6305   [cec 7369   Basecbs 15084   +g cplusg 15152   TopOpenctopn 15279   0gc0g 15297   Grpcgrp 16620   ~QG cqg 16764   Topctop 19848  TopOnctopon 19849   clsccl 19964   Homeochmeo 20699   TopGrpctgp 21017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-ec 7373  df-map 7482  df-0g 15299  df-topgen 15301  df-plusf 16438  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-grp 16624  df-minusg 16625  df-eqg 16767  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-cls 19967  df-cn 20174  df-cnp 20175  df-tx 20508  df-hmeo 20701  df-tmd 21018  df-tgp 21019
This theorem is referenced by:  tgptsmscls  21095
  Copyright terms: Public domain W3C validator