MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smuval2 Structured version   Unicode version

Theorem smuval2 13990
Description: The partial sum sequence stabilizes at  N after the  N  +  1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a  |-  ( ph  ->  A  C_  NN0 )
smuval.b  |-  ( ph  ->  B  C_  NN0 )
smuval.p  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
smuval.n  |-  ( ph  ->  N  e.  NN0 )
smuval2.m  |-  ( ph  ->  M  e.  ( ZZ>= `  ( N  +  1
) ) )
Assertion
Ref Expression
smuval2  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) )
Distinct variable groups:    m, n, p, A    n, N    ph, n    B, m, n, p
Allowed substitution hints:    ph( m, p)    P( m, n, p)    M( m, n, p)    N( m, p)

Proof of Theorem smuval2
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval2.m . 2  |-  ( ph  ->  M  e.  ( ZZ>= `  ( N  +  1
) ) )
2 fveq2 5865 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  ( P `  x )  =  ( P `  ( N  +  1
) ) )
32eleq2d 2537 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  ( N  +  1 ) ) ) )
43bibi2d 318 . . . 4  |-  ( x  =  ( N  + 
1 )  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( N  + 
1 ) ) ) ) )
54imbi2d 316 . . 3  |-  ( x  =  ( N  + 
1 )  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( N  +  1 ) ) ) ) ) )
6 fveq2 5865 . . . . . 6  |-  ( x  =  k  ->  ( P `  x )  =  ( P `  k ) )
76eleq2d 2537 . . . . 5  |-  ( x  =  k  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  k ) ) )
87bibi2d 318 . . . 4  |-  ( x  =  k  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) ) ) )
98imbi2d 316 . . 3  |-  ( x  =  k  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  k ) ) ) ) )
10 fveq2 5865 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( P `  x )  =  ( P `  ( k  +  1 ) ) )
1110eleq2d 2537 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  ( k  +  1 ) ) ) )
1211bibi2d 318 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( k  +  1 ) ) ) ) )
1312imbi2d 316 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( k  +  1 ) ) ) ) ) )
14 fveq2 5865 . . . . . 6  |-  ( x  =  M  ->  ( P `  x )  =  ( P `  M ) )
1514eleq2d 2537 . . . . 5  |-  ( x  =  M  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  M ) ) )
1615bibi2d 318 . . . 4  |-  ( x  =  M  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 M ) ) ) )
1716imbi2d 316 . . 3  |-  ( x  =  M  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) ) ) )
18 smuval.a . . . . 5  |-  ( ph  ->  A  C_  NN0 )
19 smuval.b . . . . 5  |-  ( ph  ->  B  C_  NN0 )
20 smuval.p . . . . 5  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
21 smuval.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
2218, 19, 20, 21smuval 13989 . . . 4  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( N  +  1 ) ) ) )
2322a1i 11 . . 3  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( N  + 
1 ) ) ) ) )
2418adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  A  C_  NN0 )
2519adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  B  C_  NN0 )
26 peano2nn0 10835 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2721, 26syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
28 eluznn0 11150 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
2927, 28sylan 471 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  NN0 )
3024, 25, 20, 29smupp1 13988 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( P `  ( k  +  1 ) )  =  ( ( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) )
3130eleq2d 2537 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( P `  (
k  +  1 ) )  <->  N  e.  (
( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) ) )
3224, 25, 20smupf 13986 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  P : NN0
--> ~P NN0 )
3332, 29ffvelrnd 6021 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( P `  k )  e.  ~P NN0 )
3433elpwid 4020 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( P `  k )  C_  NN0 )
35 ssrab2 3585 . . . . . . . . . . . . . 14  |-  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } 
C_  NN0
3635a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } 
C_  NN0 )
3727adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e. 
NN0 )
3834, 36, 37sadeq 13980 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  =  ( ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  ( { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  i^i  ( 0..^ ( N  +  1 ) ) ) )
39 inrab2 3771 . . . . . . . . . . . . . . . . 17  |-  ( { n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) )  =  { n  e.  ( NN0  i^i  ( 0..^ ( N  +  1 ) ) )  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }
40 inss1 3718 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( NN0 
i^i  ( 0..^ ( N  +  1 ) ) )  C_  NN0
41 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  ( NN0  i^i  ( 0..^ ( N  +  1 ) ) ) )
4240, 41sseldi 3502 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  NN0 )
4342nn0red 10852 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  RR )
4421adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  NN0 )
4544adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  N  e.  NN0 )
4645nn0red 10852 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  N  e.  RR )
47 1red 9610 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  1  e.  RR )
4846, 47readdcld 9622 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( N  +  1 )  e.  RR )
4929adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  k  e.  NN0 )
5049nn0red 10852 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  k  e.  RR )
51 inss2 3719 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( NN0 
i^i  ( 0..^ ( N  +  1 ) ) )  C_  (
0..^ ( N  + 
1 ) )
5251, 41sseldi 3502 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  ( 0..^ ( N  + 
1 ) ) )
53 elfzolt2 11804 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( 0..^ ( N  +  1 ) )  ->  n  <  ( N  +  1 ) )
5452, 53syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  <  ( N  +  1 ) )
55 eluzle 11093 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_ 
k )
5655ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( N  +  1 )  <_ 
k )
5743, 48, 50, 54, 56ltletrd 9740 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  <  k )
5843, 50ltnled 9730 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( n  <  k  <->  -.  k  <_  n ) )
5957, 58mpbid 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  -.  k  <_  n )
6025adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  B  C_  NN0 )
6160sseld 3503 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
n  -  k )  e.  B  ->  (
n  -  k )  e.  NN0 ) )
62 nn0ge0 10820 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  -  k )  e.  NN0  ->  0  <_ 
( n  -  k
) )
6361, 62syl6 33 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
n  -  k )  e.  B  ->  0  <_  ( n  -  k
) ) )
6443, 50subge0d 10141 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( 0  <_  ( n  -  k )  <->  k  <_  n ) )
6563, 64sylibd 214 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
n  -  k )  e.  B  ->  k  <_  n ) )
6665adantld 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
k  e.  A  /\  ( n  -  k
)  e.  B )  ->  k  <_  n
) )
6759, 66mtod 177 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  -.  (
k  e.  A  /\  ( n  -  k
)  e.  B ) )
6867ralrimiva 2878 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  A. n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) )  -.  ( k  e.  A  /\  ( n  -  k )  e.  B ) )
69 rabeq0 3807 . . . . . . . . . . . . . . . . . 18  |-  ( { n  e.  ( NN0 
i^i  ( 0..^ ( N  +  1 ) ) )  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  =  (/)  <->  A. n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) )  -.  ( k  e.  A  /\  ( n  -  k )  e.  B ) )
7068, 69sylibr 212 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  { n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) )  |  ( k  e.  A  /\  ( n  -  k )  e.  B ) }  =  (/) )
7139, 70syl5eq 2520 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( {
n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) )  =  (/) )
7271oveq2d 6299 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  ( { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  (/) ) )
73 inss1 3718 . . . . . . . . . . . . . . . . 17  |-  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )  C_  ( P `  k )
7473, 34syl5ss 3515 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )  C_  NN0 )
75 sadid1 13976 . . . . . . . . . . . . . . . 16  |-  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  C_  NN0 
->  ( ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  (/) )  =  ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) )
7674, 75syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  (/) )  =  ( ( P `  k )  i^i  (
0..^ ( N  + 
1 ) ) ) )
7772, 76eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  ( { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) ) )
7877ineq1d 3699 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ( P `  k )  i^i  (
0..^ ( N  + 
1 ) ) ) sadd  ( { n  e. 
NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  i^i  ( 0..^ ( N  +  1 ) ) ) )
79 inass 3708 . . . . . . . . . . . . . 14  |-  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( P `  k )  i^i  ( ( 0..^ ( N  +  1 ) )  i^i  (
0..^ ( N  + 
1 ) ) ) )
80 inidm 3707 . . . . . . . . . . . . . . 15  |-  ( ( 0..^ ( N  + 
1 ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( 0..^ ( N  +  1 ) )
8180ineq2i 3697 . . . . . . . . . . . . . 14  |-  ( ( P `  k )  i^i  ( ( 0..^ ( N  +  1 ) )  i^i  (
0..^ ( N  + 
1 ) ) ) )  =  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )
8279, 81eqtri 2496 . . . . . . . . . . . . 13  |-  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )
8378, 82syl6eq 2524 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ( P `  k )  i^i  (
0..^ ( N  + 
1 ) ) ) sadd  ( { n  e. 
NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) ) )
8438, 83eqtrd 2508 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  =  ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) ) )
8584eleq2d 2537 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( ( ( P `
 k ) sadd  {
n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  <-> 
N  e.  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) ) ) )
86 elin 3687 . . . . . . . . . 10  |-  ( N  e.  ( ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  <-> 
( N  e.  ( ( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  /\  N  e.  ( 0..^ ( N  +  1 ) ) ) )
87 elin 3687 . . . . . . . . . 10  |-  ( N  e.  ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) )  <->  ( N  e.  ( P `  k
)  /\  N  e.  ( 0..^ ( N  + 
1 ) ) ) )
8885, 86, 873bitr3g 287 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  /\  N  e.  ( 0..^ ( N  +  1 ) ) )  <->  ( N  e.  ( P `  k
)  /\  N  e.  ( 0..^ ( N  + 
1 ) ) ) ) )
89 nn0uz 11115 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
9044, 89syl6eleq 2565 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  0 )
)
91 eluzfz2 11693 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  0
)  ->  N  e.  ( 0 ... N
) )
9290, 91syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( 0 ... N
) )
9344nn0zd 10963 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ZZ )
94 fzval3 11852 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  (
0 ... N )  =  ( 0..^ ( N  +  1 ) ) )
9593, 94syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( 0 ... N )  =  ( 0..^ ( N  +  1 ) ) )
9692, 95eleqtrd 2557 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( 0..^ ( N  + 
1 ) ) )
9796biantrud 507 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } )  <->  ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } )  /\  N  e.  ( 0..^ ( N  +  1 ) ) ) ) )
9896biantrud 507 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( P `  k
)  <->  ( N  e.  ( P `  k
)  /\  N  e.  ( 0..^ ( N  + 
1 ) ) ) ) )
9988, 97, 983bitr4d 285 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } )  <->  N  e.  ( P `  k )
) )
10031, 99bitrd 253 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( P `  (
k  +  1 ) )  <->  N  e.  ( P `  k )
) )
101100bibi2d 318 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( k  +  1 ) ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) ) ) )
102101biimprd 223 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  e.  ( A smul  B )  <->  N  e.  ( P `  k )
)  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( k  +  1 ) ) ) ) )
103102expcom 435 . . . 4  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  ( ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) )  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( k  +  1 ) ) ) ) ) )
104103a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ( ph  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) ) )  ->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( k  +  1 ) ) ) ) ) )
1055, 9, 13, 17, 23, 104uzind4 11138 . 2  |-  ( M  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) ) )
1061, 105mpcom 36 1  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818    i^i cin 3475    C_ wss 3476   (/)c0 3785   ifcif 3939   ~Pcpw 4010   class class class wbr 4447    |-> cmpt 4505   ` cfv 5587  (class class class)co 6283    |-> cmpt2 6285   0cc0 9491   1c1 9492    + caddc 9494    < clt 9627    <_ cle 9628    - cmin 9804   NN0cn0 10794   ZZcz 10863   ZZ>=cuz 11081   ...cfz 11671  ..^cfzo 11791    seqcseq 12074   sadd csad 13928   smul csmu 13929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-xor 1361  df-tru 1382  df-fal 1385  df-had 1431  df-cad 1432  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-n0 10795  df-z 10864  df-uz 11082  df-rp 11220  df-fz 11672  df-fzo 11792  df-fl 11896  df-mod 11964  df-seq 12075  df-exp 12134  df-hash 12373  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-clim 13273  df-sum 13471  df-dvds 13847  df-bits 13930  df-sad 13959  df-smu 13984
This theorem is referenced by:  smupvallem  13991  smueqlem  13998
  Copyright terms: Public domain W3C validator