MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smuval2 Structured version   Visualization version   Unicode version

Theorem smuval2 14449
Description: The partial sum sequence stabilizes at  N after the  N  +  1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a  |-  ( ph  ->  A  C_  NN0 )
smuval.b  |-  ( ph  ->  B  C_  NN0 )
smuval.p  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
smuval.n  |-  ( ph  ->  N  e.  NN0 )
smuval2.m  |-  ( ph  ->  M  e.  ( ZZ>= `  ( N  +  1
) ) )
Assertion
Ref Expression
smuval2  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) )
Distinct variable groups:    m, n, p, A    n, N    ph, n    B, m, n, p
Allowed substitution hints:    ph( m, p)    P( m, n, p)    M( m, n, p)    N( m, p)

Proof of Theorem smuval2
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval2.m . 2  |-  ( ph  ->  M  e.  ( ZZ>= `  ( N  +  1
) ) )
2 fveq2 5863 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  ( P `  x )  =  ( P `  ( N  +  1
) ) )
32eleq2d 2513 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  ( N  +  1 ) ) ) )
43bibi2d 320 . . . 4  |-  ( x  =  ( N  + 
1 )  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( N  + 
1 ) ) ) ) )
54imbi2d 318 . . 3  |-  ( x  =  ( N  + 
1 )  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( N  +  1 ) ) ) ) ) )
6 fveq2 5863 . . . . . 6  |-  ( x  =  k  ->  ( P `  x )  =  ( P `  k ) )
76eleq2d 2513 . . . . 5  |-  ( x  =  k  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  k ) ) )
87bibi2d 320 . . . 4  |-  ( x  =  k  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) ) ) )
98imbi2d 318 . . 3  |-  ( x  =  k  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  k ) ) ) ) )
10 fveq2 5863 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( P `  x )  =  ( P `  ( k  +  1 ) ) )
1110eleq2d 2513 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  ( k  +  1 ) ) ) )
1211bibi2d 320 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( k  +  1 ) ) ) ) )
1312imbi2d 318 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( k  +  1 ) ) ) ) ) )
14 fveq2 5863 . . . . . 6  |-  ( x  =  M  ->  ( P `  x )  =  ( P `  M ) )
1514eleq2d 2513 . . . . 5  |-  ( x  =  M  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  M ) ) )
1615bibi2d 320 . . . 4  |-  ( x  =  M  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 M ) ) ) )
1716imbi2d 318 . . 3  |-  ( x  =  M  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) ) ) )
18 smuval.a . . . . 5  |-  ( ph  ->  A  C_  NN0 )
19 smuval.b . . . . 5  |-  ( ph  ->  B  C_  NN0 )
20 smuval.p . . . . 5  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
21 smuval.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
2218, 19, 20, 21smuval 14448 . . . 4  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( N  +  1 ) ) ) )
2322a1i 11 . . 3  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( N  + 
1 ) ) ) ) )
2418adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  A  C_  NN0 )
2519adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  B  C_  NN0 )
26 peano2nn0 10907 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2721, 26syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
28 eluznn0 11225 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
2927, 28sylan 474 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  NN0 )
3024, 25, 20, 29smupp1 14447 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( P `  ( k  +  1 ) )  =  ( ( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) )
3130eleq2d 2513 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( P `  (
k  +  1 ) )  <->  N  e.  (
( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) ) )
3224, 25, 20smupf 14445 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  P : NN0
--> ~P NN0 )
3332, 29ffvelrnd 6021 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( P `  k )  e.  ~P NN0 )
3433elpwid 3960 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( P `  k )  C_  NN0 )
35 ssrab2 3513 . . . . . . . . . . . . . 14  |-  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } 
C_  NN0
3635a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } 
C_  NN0 )
3727adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e. 
NN0 )
3834, 36, 37sadeq 14439 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  =  ( ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  ( { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  i^i  ( 0..^ ( N  +  1 ) ) ) )
39 inrab2 3715 . . . . . . . . . . . . . . . . 17  |-  ( { n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) )  =  { n  e.  ( NN0  i^i  ( 0..^ ( N  +  1 ) ) )  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }
40 inss1 3651 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( NN0 
i^i  ( 0..^ ( N  +  1 ) ) )  C_  NN0
41 simpr 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  ( NN0  i^i  ( 0..^ ( N  +  1 ) ) ) )
4240, 41sseldi 3429 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  NN0 )
4342nn0red 10923 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  RR )
4421adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  NN0 )
4544adantr 467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  N  e.  NN0 )
4645nn0red 10923 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  N  e.  RR )
47 1red 9655 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  1  e.  RR )
4846, 47readdcld 9667 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( N  +  1 )  e.  RR )
4929adantr 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  k  e.  NN0 )
5049nn0red 10923 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  k  e.  RR )
51 inss2 3652 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( NN0 
i^i  ( 0..^ ( N  +  1 ) ) )  C_  (
0..^ ( N  + 
1 ) )
5251, 41sseldi 3429 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  ( 0..^ ( N  + 
1 ) ) )
53 elfzolt2 11926 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( 0..^ ( N  +  1 ) )  ->  n  <  ( N  +  1 ) )
5452, 53syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  <  ( N  +  1 ) )
55 eluzle 11168 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_ 
k )
5655ad2antlr 732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( N  +  1 )  <_ 
k )
5743, 48, 50, 54, 56ltletrd 9792 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  <  k )
5843, 50ltnled 9779 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( n  <  k  <->  -.  k  <_  n ) )
5957, 58mpbid 214 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  -.  k  <_  n )
6025adantr 467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  B  C_  NN0 )
6160sseld 3430 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
n  -  k )  e.  B  ->  (
n  -  k )  e.  NN0 ) )
62 nn0ge0 10892 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  -  k )  e.  NN0  ->  0  <_ 
( n  -  k
) )
6361, 62syl6 34 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
n  -  k )  e.  B  ->  0  <_  ( n  -  k
) ) )
6443, 50subge0d 10200 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( 0  <_  ( n  -  k )  <->  k  <_  n ) )
6563, 64sylibd 218 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
n  -  k )  e.  B  ->  k  <_  n ) )
6665adantld 469 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
k  e.  A  /\  ( n  -  k
)  e.  B )  ->  k  <_  n
) )
6759, 66mtod 181 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  -.  (
k  e.  A  /\  ( n  -  k
)  e.  B ) )
6867ralrimiva 2801 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  A. n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) )  -.  ( k  e.  A  /\  ( n  -  k )  e.  B ) )
69 rabeq0 3753 . . . . . . . . . . . . . . . . . 18  |-  ( { n  e.  ( NN0 
i^i  ( 0..^ ( N  +  1 ) ) )  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  =  (/)  <->  A. n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) )  -.  ( k  e.  A  /\  ( n  -  k )  e.  B ) )
7068, 69sylibr 216 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  { n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) )  |  ( k  e.  A  /\  ( n  -  k )  e.  B ) }  =  (/) )
7139, 70syl5eq 2496 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( {
n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) )  =  (/) )
7271oveq2d 6304 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  ( { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  (/) ) )
73 inss1 3651 . . . . . . . . . . . . . . . . 17  |-  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )  C_  ( P `  k )
7473, 34syl5ss 3442 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )  C_  NN0 )
75 sadid1 14435 . . . . . . . . . . . . . . . 16  |-  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  C_  NN0 
->  ( ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  (/) )  =  ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) )
7674, 75syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  (/) )  =  ( ( P `  k )  i^i  (
0..^ ( N  + 
1 ) ) ) )
7772, 76eqtrd 2484 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  ( { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) ) )
7877ineq1d 3632 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ( P `  k )  i^i  (
0..^ ( N  + 
1 ) ) ) sadd  ( { n  e. 
NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  i^i  ( 0..^ ( N  +  1 ) ) ) )
79 inass 3641 . . . . . . . . . . . . . 14  |-  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( P `  k )  i^i  ( ( 0..^ ( N  +  1 ) )  i^i  (
0..^ ( N  + 
1 ) ) ) )
80 inidm 3640 . . . . . . . . . . . . . . 15  |-  ( ( 0..^ ( N  + 
1 ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( 0..^ ( N  +  1 ) )
8180ineq2i 3630 . . . . . . . . . . . . . 14  |-  ( ( P `  k )  i^i  ( ( 0..^ ( N  +  1 ) )  i^i  (
0..^ ( N  + 
1 ) ) ) )  =  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )
8279, 81eqtri 2472 . . . . . . . . . . . . 13  |-  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )
8378, 82syl6eq 2500 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ( P `  k )  i^i  (
0..^ ( N  + 
1 ) ) ) sadd  ( { n  e. 
NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) ) )
8438, 83eqtrd 2484 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  =  ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) ) )
8584eleq2d 2513 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( ( ( P `
 k ) sadd  {
n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  <-> 
N  e.  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) ) ) )
86 elin 3616 . . . . . . . . . 10  |-  ( N  e.  ( ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  <-> 
( N  e.  ( ( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  /\  N  e.  ( 0..^ ( N  +  1 ) ) ) )
87 elin 3616 . . . . . . . . . 10  |-  ( N  e.  ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) )  <->  ( N  e.  ( P `  k
)  /\  N  e.  ( 0..^ ( N  + 
1 ) ) ) )
8885, 86, 873bitr3g 291 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  /\  N  e.  ( 0..^ ( N  +  1 ) ) )  <->  ( N  e.  ( P `  k
)  /\  N  e.  ( 0..^ ( N  + 
1 ) ) ) ) )
89 nn0uz 11190 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
9044, 89syl6eleq 2538 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  0 )
)
91 eluzfz2 11804 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  0
)  ->  N  e.  ( 0 ... N
) )
9290, 91syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( 0 ... N
) )
9344nn0zd 11035 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ZZ )
94 fzval3 11980 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  (
0 ... N )  =  ( 0..^ ( N  +  1 ) ) )
9593, 94syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( 0 ... N )  =  ( 0..^ ( N  +  1 ) ) )
9692, 95eleqtrd 2530 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( 0..^ ( N  + 
1 ) ) )
9796biantrud 510 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } )  <->  ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } )  /\  N  e.  ( 0..^ ( N  +  1 ) ) ) ) )
9896biantrud 510 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( P `  k
)  <->  ( N  e.  ( P `  k
)  /\  N  e.  ( 0..^ ( N  + 
1 ) ) ) ) )
9988, 97, 983bitr4d 289 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } )  <->  N  e.  ( P `  k )
) )
10031, 99bitrd 257 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( P `  (
k  +  1 ) )  <->  N  e.  ( P `  k )
) )
101100bibi2d 320 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( k  +  1 ) ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) ) ) )
102101biimprd 227 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  e.  ( A smul  B )  <->  N  e.  ( P `  k )
)  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( k  +  1 ) ) ) ) )
103102expcom 437 . . . 4  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  ( ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) )  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( k  +  1 ) ) ) ) ) )
104103a2d 29 . . 3  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ( ph  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) ) )  ->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( k  +  1 ) ) ) ) ) )
1055, 9, 13, 17, 23, 104uzind4 11214 . 2  |-  ( M  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) ) )
1061, 105mpcom 37 1  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886   A.wral 2736   {crab 2740    i^i cin 3402    C_ wss 3403   (/)c0 3730   ifcif 3880   ~Pcpw 3950   class class class wbr 4401    |-> cmpt 4460   ` cfv 5581  (class class class)co 6288    |-> cmpt2 6290   0cc0 9536   1c1 9537    + caddc 9539    < clt 9672    <_ cle 9673    - cmin 9857   NN0cn0 10866   ZZcz 10934   ZZ>=cuz 11156   ...cfz 11781  ..^cfzo 11912    seqcseq 12210   sadd csad 14386   smul csmu 14387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-xor 1405  df-tru 1446  df-fal 1449  df-had 1496  df-cad 1509  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-disj 4373  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-er 7360  df-map 7471  df-pm 7472  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-n0 10867  df-z 10935  df-uz 11157  df-rp 11300  df-fz 11782  df-fzo 11913  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-clim 13545  df-sum 13746  df-dvds 14299  df-bits 14388  df-sad 14418  df-smu 14443
This theorem is referenced by:  smupvallem  14450  smueqlem  14457
  Copyright terms: Public domain W3C validator