MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smuval2 Structured version   Unicode version

Theorem smuval2 14134
Description: The partial sum sequence stabilizes at  N after the  N  +  1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a  |-  ( ph  ->  A  C_  NN0 )
smuval.b  |-  ( ph  ->  B  C_  NN0 )
smuval.p  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
smuval.n  |-  ( ph  ->  N  e.  NN0 )
smuval2.m  |-  ( ph  ->  M  e.  ( ZZ>= `  ( N  +  1
) ) )
Assertion
Ref Expression
smuval2  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) )
Distinct variable groups:    m, n, p, A    n, N    ph, n    B, m, n, p
Allowed substitution hints:    ph( m, p)    P( m, n, p)    M( m, n, p)    N( m, p)

Proof of Theorem smuval2
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval2.m . 2  |-  ( ph  ->  M  e.  ( ZZ>= `  ( N  +  1
) ) )
2 fveq2 5774 . . . . . 6  |-  ( x  =  ( N  + 
1 )  ->  ( P `  x )  =  ( P `  ( N  +  1
) ) )
32eleq2d 2452 . . . . 5  |-  ( x  =  ( N  + 
1 )  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  ( N  +  1 ) ) ) )
43bibi2d 316 . . . 4  |-  ( x  =  ( N  + 
1 )  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( N  + 
1 ) ) ) ) )
54imbi2d 314 . . 3  |-  ( x  =  ( N  + 
1 )  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( N  +  1 ) ) ) ) ) )
6 fveq2 5774 . . . . . 6  |-  ( x  =  k  ->  ( P `  x )  =  ( P `  k ) )
76eleq2d 2452 . . . . 5  |-  ( x  =  k  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  k ) ) )
87bibi2d 316 . . . 4  |-  ( x  =  k  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) ) ) )
98imbi2d 314 . . 3  |-  ( x  =  k  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  k ) ) ) ) )
10 fveq2 5774 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( P `  x )  =  ( P `  ( k  +  1 ) ) )
1110eleq2d 2452 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  ( k  +  1 ) ) ) )
1211bibi2d 316 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( k  +  1 ) ) ) ) )
1312imbi2d 314 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( k  +  1 ) ) ) ) ) )
14 fveq2 5774 . . . . . 6  |-  ( x  =  M  ->  ( P `  x )  =  ( P `  M ) )
1514eleq2d 2452 . . . . 5  |-  ( x  =  M  ->  ( N  e.  ( P `  x )  <->  N  e.  ( P `  M ) ) )
1615bibi2d 316 . . . 4  |-  ( x  =  M  ->  (
( N  e.  ( A smul  B )  <->  N  e.  ( P `  x ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 M ) ) ) )
1716imbi2d 314 . . 3  |-  ( x  =  M  ->  (
( ph  ->  ( N  e.  ( A smul  B
)  <->  N  e.  ( P `  x )
) )  <->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) ) ) )
18 smuval.a . . . . 5  |-  ( ph  ->  A  C_  NN0 )
19 smuval.b . . . . 5  |-  ( ph  ->  B  C_  NN0 )
20 smuval.p . . . . 5  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
21 smuval.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
2218, 19, 20, 21smuval 14133 . . . 4  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( N  +  1 ) ) ) )
2322a1i 11 . . 3  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( N  + 
1 ) ) ) ) )
2418adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  A  C_  NN0 )
2519adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  B  C_  NN0 )
26 peano2nn0 10753 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2721, 26syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
28 eluznn0 11070 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
2927, 28sylan 469 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  NN0 )
3024, 25, 20, 29smupp1 14132 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( P `  ( k  +  1 ) )  =  ( ( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) )
3130eleq2d 2452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( P `  (
k  +  1 ) )  <->  N  e.  (
( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) ) )
3224, 25, 20smupf 14130 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  P : NN0
--> ~P NN0 )
3332, 29ffvelrnd 5934 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( P `  k )  e.  ~P NN0 )
3433elpwid 3937 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( P `  k )  C_  NN0 )
35 ssrab2 3499 . . . . . . . . . . . . . 14  |-  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } 
C_  NN0
3635a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } 
C_  NN0 )
3727adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e. 
NN0 )
3834, 36, 37sadeq 14124 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  =  ( ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  ( { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  i^i  ( 0..^ ( N  +  1 ) ) ) )
39 inrab2 3696 . . . . . . . . . . . . . . . . 17  |-  ( { n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) )  =  { n  e.  ( NN0  i^i  ( 0..^ ( N  +  1 ) ) )  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }
40 inss1 3632 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( NN0 
i^i  ( 0..^ ( N  +  1 ) ) )  C_  NN0
41 simpr 459 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  ( NN0  i^i  ( 0..^ ( N  +  1 ) ) ) )
4240, 41sseldi 3415 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  NN0 )
4342nn0red 10770 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  RR )
4421adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  NN0 )
4544adantr 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  N  e.  NN0 )
4645nn0red 10770 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  N  e.  RR )
47 1red 9522 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  1  e.  RR )
4846, 47readdcld 9534 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( N  +  1 )  e.  RR )
4929adantr 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  k  e.  NN0 )
5049nn0red 10770 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  k  e.  RR )
51 inss2 3633 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( NN0 
i^i  ( 0..^ ( N  +  1 ) ) )  C_  (
0..^ ( N  + 
1 ) )
5251, 41sseldi 3415 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  e.  ( 0..^ ( N  + 
1 ) ) )
53 elfzolt2 11731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( 0..^ ( N  +  1 ) )  ->  n  <  ( N  +  1 ) )
5452, 53syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  <  ( N  +  1 ) )
55 eluzle 11013 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_ 
k )
5655ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( N  +  1 )  <_ 
k )
5743, 48, 50, 54, 56ltletrd 9653 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  n  <  k )
5843, 50ltnled 9643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( n  <  k  <->  -.  k  <_  n ) )
5957, 58mpbid 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  -.  k  <_  n )
6025adantr 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  B  C_  NN0 )
6160sseld 3416 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
n  -  k )  e.  B  ->  (
n  -  k )  e.  NN0 ) )
62 nn0ge0 10738 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  -  k )  e.  NN0  ->  0  <_ 
( n  -  k
) )
6361, 62syl6 33 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
n  -  k )  e.  B  ->  0  <_  ( n  -  k
) ) )
6443, 50subge0d 10059 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( 0  <_  ( n  -  k )  <->  k  <_  n ) )
6563, 64sylibd 214 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
n  -  k )  e.  B  ->  k  <_  n ) )
6665adantld 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
k  e.  A  /\  ( n  -  k
)  e.  B )  ->  k  <_  n
) )
6759, 66mtod 177 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) ) )  ->  -.  (
k  e.  A  /\  ( n  -  k
)  e.  B ) )
6867ralrimiva 2796 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  A. n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) )  -.  ( k  e.  A  /\  ( n  -  k )  e.  B ) )
69 rabeq0 3734 . . . . . . . . . . . . . . . . . 18  |-  ( { n  e.  ( NN0 
i^i  ( 0..^ ( N  +  1 ) ) )  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  =  (/)  <->  A. n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) )  -.  ( k  e.  A  /\  ( n  -  k )  e.  B ) )
7068, 69sylibr 212 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  { n  e.  ( NN0  i^i  (
0..^ ( N  + 
1 ) ) )  |  ( k  e.  A  /\  ( n  -  k )  e.  B ) }  =  (/) )
7139, 70syl5eq 2435 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( {
n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) )  =  (/) )
7271oveq2d 6212 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  ( { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  (/) ) )
73 inss1 3632 . . . . . . . . . . . . . . . . 17  |-  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )  C_  ( P `  k )
7473, 34syl5ss 3428 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )  C_  NN0 )
75 sadid1 14120 . . . . . . . . . . . . . . . 16  |-  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  C_  NN0 
->  ( ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  (/) )  =  ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) )
7674, 75syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  (/) )  =  ( ( P `  k )  i^i  (
0..^ ( N  + 
1 ) ) ) )
7772, 76eqtrd 2423 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) ) sadd  ( { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) ) )
7877ineq1d 3613 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ( P `  k )  i^i  (
0..^ ( N  + 
1 ) ) ) sadd  ( { n  e. 
NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  i^i  ( 0..^ ( N  +  1 ) ) ) )
79 inass 3622 . . . . . . . . . . . . . 14  |-  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( P `  k )  i^i  ( ( 0..^ ( N  +  1 ) )  i^i  (
0..^ ( N  + 
1 ) ) ) )
80 inidm 3621 . . . . . . . . . . . . . . 15  |-  ( ( 0..^ ( N  + 
1 ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( 0..^ ( N  +  1 ) )
8180ineq2i 3611 . . . . . . . . . . . . . 14  |-  ( ( P `  k )  i^i  ( ( 0..^ ( N  +  1 ) )  i^i  (
0..^ ( N  + 
1 ) ) ) )  =  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )
8279, 81eqtri 2411 . . . . . . . . . . . . 13  |-  ( ( ( P `  k
)  i^i  ( 0..^ ( N  +  1 ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) )
8378, 82syl6eq 2439 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ( P `  k )  i^i  (
0..^ ( N  + 
1 ) ) ) sadd  ( { n  e. 
NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) }  i^i  ( 0..^ ( N  +  1 ) ) ) )  i^i  ( 0..^ ( N  +  1 ) ) )  =  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) ) )
8438, 83eqtrd 2423 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  =  ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) ) )
8584eleq2d 2452 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( ( ( P `
 k ) sadd  {
n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  <-> 
N  e.  ( ( P `  k )  i^i  ( 0..^ ( N  +  1 ) ) ) ) )
86 elin 3601 . . . . . . . . . 10  |-  ( N  e.  ( ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  i^i  (
0..^ ( N  + 
1 ) ) )  <-> 
( N  e.  ( ( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  /\  N  e.  ( 0..^ ( N  +  1 ) ) ) )
87 elin 3601 . . . . . . . . . 10  |-  ( N  e.  ( ( P `
 k )  i^i  ( 0..^ ( N  +  1 ) ) )  <->  ( N  e.  ( P `  k
)  /\  N  e.  ( 0..^ ( N  + 
1 ) ) ) )
8885, 86, 873bitr3g 287 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  /\  N  e.  ( 0..^ ( N  +  1 ) ) )  <->  ( N  e.  ( P `  k
)  /\  N  e.  ( 0..^ ( N  + 
1 ) ) ) ) )
89 nn0uz 11035 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
9044, 89syl6eleq 2480 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  0 )
)
91 eluzfz2 11615 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  0
)  ->  N  e.  ( 0 ... N
) )
9290, 91syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( 0 ... N
) )
9344nn0zd 10882 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ZZ )
94 fzval3 11784 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  (
0 ... N )  =  ( 0..^ ( N  +  1 ) ) )
9593, 94syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( 0 ... N )  =  ( 0..^ ( N  +  1 ) ) )
9692, 95eleqtrd 2472 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( 0..^ ( N  + 
1 ) ) )
9796biantrud 505 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } )  <->  ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } )  /\  N  e.  ( 0..^ ( N  +  1 ) ) ) ) )
9896biantrud 505 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( P `  k
)  <->  ( N  e.  ( P `  k
)  /\  N  e.  ( 0..^ ( N  + 
1 ) ) ) ) )
9988, 97, 983bitr4d 285 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( ( P `  k ) sadd  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) } )  <->  N  e.  ( P `  k )
) )
10031, 99bitrd 253 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  e.  ( P `  (
k  +  1 ) )  <->  N  e.  ( P `  k )
) )
101100bibi2d 316 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( k  +  1 ) ) )  <->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) ) ) )
102101biimprd 223 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  e.  ( A smul  B )  <->  N  e.  ( P `  k )
)  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( k  +  1 ) ) ) ) )
103102expcom 433 . . . 4  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  ( ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) )  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 ( k  +  1 ) ) ) ) ) )
104103a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ( ph  ->  ( N  e.  ( A smul  B )  <-> 
N  e.  ( P `
 k ) ) )  ->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  ( k  +  1 ) ) ) ) ) )
1055, 9, 13, 17, 23, 104uzind4 11059 . 2  |-  ( M  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) ) )
1061, 105mpcom 36 1  |-  ( ph  ->  ( N  e.  ( A smul  B )  <->  N  e.  ( P `  M ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826   A.wral 2732   {crab 2736    i^i cin 3388    C_ wss 3389   (/)c0 3711   ifcif 3857   ~Pcpw 3927   class class class wbr 4367    |-> cmpt 4425   ` cfv 5496  (class class class)co 6196    |-> cmpt2 6198   0cc0 9403   1c1 9404    + caddc 9406    < clt 9539    <_ cle 9540    - cmin 9718   NN0cn0 10712   ZZcz 10781   ZZ>=cuz 11001   ...cfz 11593  ..^cfzo 11717    seqcseq 12010   sadd csad 14072   smul csmu 14073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-xor 1363  df-tru 1402  df-fal 1405  df-had 1454  df-cad 1455  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-disj 4339  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-map 7340  df-pm 7341  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-sup 7816  df-oi 7850  df-card 8233  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-n0 10713  df-z 10782  df-uz 11002  df-rp 11140  df-fz 11594  df-fzo 11718  df-fl 11828  df-mod 11897  df-seq 12011  df-exp 12070  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-clim 13313  df-sum 13511  df-dvds 13989  df-bits 14074  df-sad 14103  df-smu 14128
This theorem is referenced by:  smupvallem  14135  smueqlem  14142
  Copyright terms: Public domain W3C validator