MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupp1 Structured version   Unicode version

Theorem smupp1 13697
Description: The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a  |-  ( ph  ->  A  C_  NN0 )
smuval.b  |-  ( ph  ->  B  C_  NN0 )
smuval.p  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
smuval.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
smupp1  |-  ( ph  ->  ( P `  ( N  +  1 ) )  =  ( ( P `  N ) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } ) )
Distinct variable groups:    m, n, p, A    n, N    ph, n    B, m, n, p
Allowed substitution hints:    ph( m, p)    P( m, n, p)    N( m, p)

Proof of Theorem smupp1
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
2 nn0uz 10916 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2533 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
4 seqp1 11842 . . . 4  |-  ( N  e.  ( ZZ>= `  0
)  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  ( N  +  1 ) )  =  ( (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  N
) ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1 ) ) ) )
53, 4syl 16 . . 3  |-  ( ph  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  ( N  +  1 ) )  =  ( (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  N
) ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1 ) ) ) )
6 smuval.p . . . 4  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
76fveq1i 5713 . . 3  |-  ( P `
 ( N  + 
1 ) )  =  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  ( N  +  1 ) )
86fveq1i 5713 . . . 4  |-  ( P `
 N )  =  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  N )
98oveq1i 6122 . . 3  |-  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) ) )  =  ( (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  N
) ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1 ) ) )
105, 7, 93eqtr4g 2500 . 2  |-  ( ph  ->  ( P `  ( N  +  1 ) )  =  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) ) ) )
11 1nn0 10616 . . . . . . 7  |-  1  e.  NN0
1211a1i 11 . . . . . 6  |-  ( ph  ->  1  e.  NN0 )
131, 12nn0addcld 10661 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
14 eqeq1 2449 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
n  =  0  <->  ( N  +  1 )  =  0 ) )
15 oveq1 6119 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
n  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
1614, 15ifbieq2d 3835 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) )  =  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  + 
1 )  -  1 ) ) )
17 eqid 2443 . . . . . 6  |-  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) )  =  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) )
18 0ex 4443 . . . . . . 7  |-  (/)  e.  _V
19 ovex 6137 . . . . . . 7  |-  ( ( N  +  1 )  -  1 )  e. 
_V
2018, 19ifex 3879 . . . . . 6  |-  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  +  1 )  - 
1 ) )  e. 
_V
2116, 17, 20fvmpt 5795 . . . . 5  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) )  =  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) ) )
2213, 21syl 16 . . . 4  |-  ( ph  ->  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1
) )  =  if ( ( N  + 
1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) ) )
23 nn0p1nn 10640 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
241, 23syl 16 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  NN )
2524nnne0d 10387 . . . . 5  |-  ( ph  ->  ( N  +  1 )  =/=  0 )
26 ifnefalse 3822 . . . . 5  |-  ( ( N  +  1 )  =/=  0  ->  if ( ( N  + 
1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) )  =  ( ( N  +  1 )  - 
1 ) )
2725, 26syl 16 . . . 4  |-  ( ph  ->  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) )  =  ( ( N  +  1 )  -  1 ) )
281nn0cnd 10659 . . . . 5  |-  ( ph  ->  N  e.  CC )
2912nn0cnd 10659 . . . . 5  |-  ( ph  ->  1  e.  CC )
3028, 29pncand 9741 . . . 4  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
3122, 27, 303eqtrd 2479 . . 3  |-  ( ph  ->  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1
) )  =  N )
3231oveq2d 6128 . 2  |-  ( ph  ->  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1 ) ) )  =  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) N ) )
33 smuval.a . . . . 5  |-  ( ph  ->  A  C_  NN0 )
34 smuval.b . . . . 5  |-  ( ph  ->  B  C_  NN0 )
3533, 34, 6smupf 13695 . . . 4  |-  ( ph  ->  P : NN0 --> ~P NN0 )
3635, 1ffvelrnd 5865 . . 3  |-  ( ph  ->  ( P `  N
)  e.  ~P NN0 )
37 simpl 457 . . . . 5  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  x  =  ( P `
 N ) )
38 simpr 461 . . . . . . . . 9  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  y  =  N )
3938eleq1d 2509 . . . . . . . 8  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  ( y  e.  A  <->  N  e.  A ) )
4038oveq2d 6128 . . . . . . . . 9  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  ( k  -  y
)  =  ( k  -  N ) )
4140eleq1d 2509 . . . . . . . 8  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  ( ( k  -  y )  e.  B  <->  ( k  -  N )  e.  B ) )
4239, 41anbi12d 710 . . . . . . 7  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  ( ( y  e.  A  /\  ( k  -  y )  e.  B )  <->  ( N  e.  A  /\  (
k  -  N )  e.  B ) ) )
4342rabbidv 2985 . . . . . 6  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  { k  e.  NN0  |  ( y  e.  A  /\  ( k  -  y
)  e.  B ) }  =  { k  e.  NN0  |  ( N  e.  A  /\  ( k  -  N
)  e.  B ) } )
44 oveq1 6119 . . . . . . . . 9  |-  ( k  =  n  ->  (
k  -  N )  =  ( n  -  N ) )
4544eleq1d 2509 . . . . . . . 8  |-  ( k  =  n  ->  (
( k  -  N
)  e.  B  <->  ( n  -  N )  e.  B
) )
4645anbi2d 703 . . . . . . 7  |-  ( k  =  n  ->  (
( N  e.  A  /\  ( k  -  N
)  e.  B )  <-> 
( N  e.  A  /\  ( n  -  N
)  e.  B ) ) )
4746cbvrabv 2992 . . . . . 6  |-  { k  e.  NN0  |  ( N  e.  A  /\  ( k  -  N
)  e.  B ) }  =  { n  e.  NN0  |  ( N  e.  A  /\  (
n  -  N )  e.  B ) }
4843, 47syl6eq 2491 . . . . 5  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  { k  e.  NN0  |  ( y  e.  A  /\  ( k  -  y
)  e.  B ) }  =  { n  e.  NN0  |  ( N  e.  A  /\  (
n  -  N )  e.  B ) } )
4937, 48oveq12d 6130 . . . 4  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  ( x sadd  { k  e.  NN0  |  (
y  e.  A  /\  ( k  -  y
)  e.  B ) } )  =  ( ( P `  N
) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } ) )
50 oveq1 6119 . . . . 5  |-  ( p  =  x  ->  (
p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } )  =  ( x sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) )
51 eleq1 2503 . . . . . . . . 9  |-  ( m  =  y  ->  (
m  e.  A  <->  y  e.  A ) )
52 oveq2 6120 . . . . . . . . . 10  |-  ( m  =  y  ->  (
n  -  m )  =  ( n  -  y ) )
5352eleq1d 2509 . . . . . . . . 9  |-  ( m  =  y  ->  (
( n  -  m
)  e.  B  <->  ( n  -  y )  e.  B ) )
5451, 53anbi12d 710 . . . . . . . 8  |-  ( m  =  y  ->  (
( m  e.  A  /\  ( n  -  m
)  e.  B )  <-> 
( y  e.  A  /\  ( n  -  y
)  e.  B ) ) )
5554rabbidv 2985 . . . . . . 7  |-  ( m  =  y  ->  { n  e.  NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) }  =  { n  e. 
NN0  |  ( y  e.  A  /\  (
n  -  y )  e.  B ) } )
56 oveq1 6119 . . . . . . . . . 10  |-  ( k  =  n  ->  (
k  -  y )  =  ( n  -  y ) )
5756eleq1d 2509 . . . . . . . . 9  |-  ( k  =  n  ->  (
( k  -  y
)  e.  B  <->  ( n  -  y )  e.  B ) )
5857anbi2d 703 . . . . . . . 8  |-  ( k  =  n  ->  (
( y  e.  A  /\  ( k  -  y
)  e.  B )  <-> 
( y  e.  A  /\  ( n  -  y
)  e.  B ) ) )
5958cbvrabv 2992 . . . . . . 7  |-  { k  e.  NN0  |  (
y  e.  A  /\  ( k  -  y
)  e.  B ) }  =  { n  e.  NN0  |  ( y  e.  A  /\  (
n  -  y )  e.  B ) }
6055, 59syl6eqr 2493 . . . . . 6  |-  ( m  =  y  ->  { n  e.  NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) }  =  { k  e. 
NN0  |  ( y  e.  A  /\  (
k  -  y )  e.  B ) } )
6160oveq2d 6128 . . . . 5  |-  ( m  =  y  ->  (
x sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } )  =  ( x sadd  { k  e. 
NN0  |  ( y  e.  A  /\  (
k  -  y )  e.  B ) } ) )
6250, 61cbvmpt2v 6187 . . . 4  |-  ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) )  =  ( x  e.  ~P NN0 ,  y  e.  NN0  |->  ( x sadd  { k  e. 
NN0  |  ( y  e.  A  /\  (
k  -  y )  e.  B ) } ) )
63 ovex 6137 . . . 4  |-  ( ( P `  N ) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } )  e.  _V
6449, 62, 63ovmpt2a 6242 . . 3  |-  ( ( ( P `  N
)  e.  ~P NN0  /\  N  e.  NN0 )  ->  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) N )  =  ( ( P `  N ) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } ) )
6536, 1, 64syl2anc 661 . 2  |-  ( ph  ->  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) N )  =  ( ( P `  N ) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } ) )
6610, 32, 653eqtrd 2479 1  |-  ( ph  ->  ( P `  ( N  +  1 ) )  =  ( ( P `  N ) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   {crab 2740    C_ wss 3349   (/)c0 3658   ifcif 3812   ~Pcpw 3881    e. cmpt 4371   ` cfv 5439  (class class class)co 6112    e. cmpt2 6114   0cc0 9303   1c1 9304    + caddc 9306    - cmin 9616   NNcn 10343   NN0cn0 10600   ZZ>=cuz 10882    seqcseq 11827   sadd csad 13637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-xor 1351  df-tru 1372  df-had 1421  df-cad 1422  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-n0 10601  df-z 10668  df-uz 10883  df-fz 11459  df-seq 11828  df-sad 13668
This theorem is referenced by:  smuval2  13699  smupvallem  13700  smu01lem  13702  smupval  13705  smup1  13706  smueqlem  13707
  Copyright terms: Public domain W3C validator