MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smup0 Structured version   Unicode version

Theorem smup0 13788
Description: The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a  |-  ( ph  ->  A  C_  NN0 )
smuval.b  |-  ( ph  ->  B  C_  NN0 )
smuval.p  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
Assertion
Ref Expression
smup0  |-  ( ph  ->  ( P `  0
)  =  (/) )
Distinct variable groups:    m, n, p, A    ph, n    B, m, n, p
Allowed substitution hints:    ph( m, p)    P( m, n, p)

Proof of Theorem smup0
StepHypRef Expression
1 0z 10763 . . 3  |-  0  e.  ZZ
2 smuval.p . . . . 5  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
32fveq1i 5795 . . . 4  |-  ( P `
 0 )  =  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  0 )
4 seq1 11931 . . . 4  |-  ( 0  e.  ZZ  ->  (  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  0
)  =  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 ) )
53, 4syl5eq 2505 . . 3  |-  ( 0  e.  ZZ  ->  ( P `  0 )  =  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 ) )
61, 5mp1i 12 . 2  |-  ( ph  ->  ( P `  0
)  =  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 ) )
7 0nn0 10700 . . 3  |-  0  e.  NN0
8 iftrue 3900 . . . 4  |-  ( n  =  0  ->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) )  =  (/) )
9 eqid 2452 . . . 4  |-  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) )  =  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) )
10 0ex 4525 . . . 4  |-  (/)  e.  _V
118, 9, 10fvmpt 5878 . . 3  |-  ( 0  e.  NN0  ->  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  =  (/) )
127, 11mp1i 12 . 2  |-  ( ph  ->  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ` 
0 )  =  (/) )
136, 12eqtrd 2493 1  |-  ( ph  ->  ( P `  0
)  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   {crab 2800    C_ wss 3431   (/)c0 3740   ifcif 3894   ~Pcpw 3963    |-> cmpt 4453   ` cfv 5521  (class class class)co 6195    |-> cmpt2 6197   0cc0 9388   1c1 9389    - cmin 9701   NN0cn0 10685   ZZcz 10752    seqcseq 11918   sadd csad 13729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-2nd 6683  df-recs 6937  df-rdg 6971  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-nn 10429  df-n0 10686  df-z 10753  df-uz 10968  df-seq 11919
This theorem is referenced by:  smu01lem  13794  smupval  13797  smueqlem  13799
  Copyright terms: Public domain W3C validator