MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smumul Structured version   Unicode version

Theorem smumul 14441
Description: For sequences that correspond to valid integers, the sequence multiplication function produces the sequence for the product. This is effectively a proof of the correctness of the multiplication process, implemented in terms of logic gates for df-sad 14399, whose correctness is verified in sadadd 14415.

Outside this range, the sequences cannot be representing integers, but the smul function still "works". This extended function is best interpreted in terms of the ring structure of the 2-adic integers. (Contributed by Mario Carneiro, 22-Sep-2016.)

Assertion
Ref Expression
smumul  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( (bits `  A
) smul  (bits `  B )
)  =  (bits `  ( A  x.  B
) ) )

Proof of Theorem smumul
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 bitsss 14374 . . . . . 6  |-  (bits `  A )  C_  NN0
2 bitsss 14374 . . . . . 6  |-  (bits `  B )  C_  NN0
3 smucl 14432 . . . . . 6  |-  ( ( (bits `  A )  C_ 
NN0  /\  (bits `  B
)  C_  NN0 )  -> 
( (bits `  A
) smul  (bits `  B )
)  C_  NN0 )
41, 2, 3mp2an 676 . . . . 5  |-  ( (bits `  A ) smul  (bits `  B ) )  C_  NN0
54sseli 3466 . . . 4  |-  ( k  e.  ( (bits `  A ) smul  (bits `  B
) )  ->  k  e.  NN0 )
65a1i 11 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( k  e.  ( (bits `  A ) smul  (bits `  B ) )  ->  k  e.  NN0 ) )
7 bitsss 14374 . . . . 5  |-  (bits `  ( A  x.  B
) )  C_  NN0
87sseli 3466 . . . 4  |-  ( k  e.  (bits `  ( A  x.  B )
)  ->  k  e.  NN0 )
98a1i 11 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( k  e.  (bits `  ( A  x.  B
) )  ->  k  e.  NN0 ) )
10 simpll 758 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  A  e.  ZZ )
11 simplr 760 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  B  e.  ZZ )
12 simpr 462 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
13 1nn0 10885 . . . . . . . . . . . . . 14  |-  1  e.  NN0
1413a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  1  e.  NN0 )
1512, 14nn0addcld 10929 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( k  +  1 )  e.  NN0 )
1610, 11, 15smumullem 14440 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( (bits `  A )  i^i  (
0..^ ( k  +  1 ) ) ) smul  (bits `  B )
)  =  (bits `  ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
) ) )
1716ineq1d 3669 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( ( (bits `  A )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  (bits `  B
) )  i^i  (
0..^ ( k  +  1 ) ) )  =  ( (bits `  ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
) )  i^i  (
0..^ ( k  +  1 ) ) ) )
18 2nn 10767 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
1918a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  2  e.  NN )
2019, 15nnexpcld 12434 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( 2 ^ ( k  +  1 ) )  e.  NN )
2110, 20zmodcld 12114 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( A  mod  ( 2 ^ (
k  +  1 ) ) )  e.  NN0 )
2221nn0zd 11038 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( A  mod  ( 2 ^ (
k  +  1 ) ) )  e.  ZZ )
2322, 11zmulcld 11046 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( A  mod  ( 2 ^ ( k  +  1 ) ) )  x.  B )  e.  ZZ )
24 bitsmod 14384 . . . . . . . . . . 11  |-  ( ( ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
)  e.  ZZ  /\  ( k  +  1 )  e.  NN0 )  ->  (bits `  ( (
( A  mod  (
2 ^ ( k  +  1 ) ) )  x.  B )  mod  ( 2 ^ ( k  +  1 ) ) ) )  =  ( (bits `  ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
) )  i^i  (
0..^ ( k  +  1 ) ) ) )
2523, 15, 24syl2anc 665 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  (bits `  (
( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
)  mod  ( 2 ^ ( k  +  1 ) ) ) )  =  ( (bits `  ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
) )  i^i  (
0..^ ( k  +  1 ) ) ) )
2617, 25eqtr4d 2473 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( ( (bits `  A )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  (bits `  B
) )  i^i  (
0..^ ( k  +  1 ) ) )  =  (bits `  (
( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
)  mod  ( 2 ^ ( k  +  1 ) ) ) ) )
27 inass 3678 . . . . . . . . . . . . 13  |-  ( ( (bits `  A )  i^i  ( 0..^ ( k  +  1 ) ) )  i^i  ( 0..^ ( k  +  1 ) ) )  =  ( (bits `  A
)  i^i  ( (
0..^ ( k  +  1 ) )  i^i  ( 0..^ ( k  +  1 ) ) ) )
28 inidm 3677 . . . . . . . . . . . . . 14  |-  ( ( 0..^ ( k  +  1 ) )  i^i  ( 0..^ ( k  +  1 ) ) )  =  ( 0..^ ( k  +  1 ) )
2928ineq2i 3667 . . . . . . . . . . . . 13  |-  ( (bits `  A )  i^i  (
( 0..^ ( k  +  1 ) )  i^i  ( 0..^ ( k  +  1 ) ) ) )  =  ( (bits `  A
)  i^i  ( 0..^ ( k  +  1 ) ) )
3027, 29eqtri 2458 . . . . . . . . . . . 12  |-  ( ( (bits `  A )  i^i  ( 0..^ ( k  +  1 ) ) )  i^i  ( 0..^ ( k  +  1 ) ) )  =  ( (bits `  A
)  i^i  ( 0..^ ( k  +  1 ) ) )
3130oveq1i 6315 . . . . . . . . . . 11  |-  ( ( ( (bits `  A
)  i^i  ( 0..^ ( k  +  1 ) ) )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  ( (bits `  B )  i^i  (
0..^ ( k  +  1 ) ) ) )  =  ( ( (bits `  A )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  ( (bits `  B )  i^i  (
0..^ ( k  +  1 ) ) ) )
3231ineq1i 3666 . . . . . . . . . 10  |-  ( ( ( ( (bits `  A )  i^i  (
0..^ ( k  +  1 ) ) )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  ( (bits `  B )  i^i  (
0..^ ( k  +  1 ) ) ) )  i^i  ( 0..^ ( k  +  1 ) ) )  =  ( ( ( (bits `  A )  i^i  (
0..^ ( k  +  1 ) ) ) smul  ( (bits `  B
)  i^i  ( 0..^ ( k  +  1 ) ) ) )  i^i  ( 0..^ ( k  +  1 ) ) )
33 inss1 3688 . . . . . . . . . . . 12  |-  ( (bits `  A )  i^i  (
0..^ ( k  +  1 ) ) ) 
C_  (bits `  A
)
341a1i 11 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  (bits `  A
)  C_  NN0 )
3533, 34syl5ss 3481 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( (bits `  A )  i^i  (
0..^ ( k  +  1 ) ) ) 
C_  NN0 )
362a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  (bits `  B
)  C_  NN0 )
3735, 36, 15smueq 14439 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( ( (bits `  A )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  (bits `  B
) )  i^i  (
0..^ ( k  +  1 ) ) )  =  ( ( ( ( (bits `  A
)  i^i  ( 0..^ ( k  +  1 ) ) )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  ( (bits `  B )  i^i  (
0..^ ( k  +  1 ) ) ) )  i^i  ( 0..^ ( k  +  1 ) ) ) )
3834, 36, 15smueq 14439 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( (bits `  A ) smul  (bits `  B ) )  i^i  ( 0..^ ( k  +  1 ) ) )  =  ( ( ( (bits `  A
)  i^i  ( 0..^ ( k  +  1 ) ) ) smul  (
(bits `  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )  i^i  (
0..^ ( k  +  1 ) ) ) )
3932, 37, 383eqtr4a 2496 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( ( (bits `  A )  i^i  ( 0..^ ( k  +  1 ) ) ) smul  (bits `  B
) )  i^i  (
0..^ ( k  +  1 ) ) )  =  ( ( (bits `  A ) smul  (bits `  B ) )  i^i  ( 0..^ ( k  +  1 ) ) ) )
4020nnrpd 11339 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( 2 ^ ( k  +  1 ) )  e.  RR+ )
4110zred 11040 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  A  e.  RR )
42 modabs2 12128 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( 2 ^ (
k  +  1 ) )  e.  RR+ )  ->  ( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  mod  (
2 ^ ( k  +  1 ) ) )  =  ( A  mod  ( 2 ^ ( k  +  1 ) ) ) )
4341, 40, 42syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( A  mod  ( 2 ^ ( k  +  1 ) ) )  mod  ( 2 ^ (
k  +  1 ) ) )  =  ( A  mod  ( 2 ^ ( k  +  1 ) ) ) )
44 eqidd 2430 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( B  mod  ( 2 ^ (
k  +  1 ) ) )  =  ( B  mod  ( 2 ^ ( k  +  1 ) ) ) )
4522, 10, 11, 11, 40, 43, 44modmul12d 12141 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( ( A  mod  ( 2 ^ ( k  +  1 ) ) )  x.  B )  mod  ( 2 ^ (
k  +  1 ) ) )  =  ( ( A  x.  B
)  mod  ( 2 ^ ( k  +  1 ) ) ) )
4645fveq2d 5885 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  (bits `  (
( ( A  mod  ( 2 ^ (
k  +  1 ) ) )  x.  B
)  mod  ( 2 ^ ( k  +  1 ) ) ) )  =  (bits `  ( ( A  x.  B )  mod  (
2 ^ ( k  +  1 ) ) ) ) )
4726, 39, 463eqtr3d 2478 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( (bits `  A ) smul  (bits `  B ) )  i^i  ( 0..^ ( k  +  1 ) ) )  =  (bits `  ( ( A  x.  B )  mod  (
2 ^ ( k  +  1 ) ) ) ) )
4810, 11zmulcld 11046 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( A  x.  B )  e.  ZZ )
49 bitsmod 14384 . . . . . . . . 9  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  ( k  +  1 )  e.  NN0 )  ->  (bits `  ( ( A  x.  B )  mod  ( 2 ^ (
k  +  1 ) ) ) )  =  ( (bits `  ( A  x.  B )
)  i^i  ( 0..^ ( k  +  1 ) ) ) )
5048, 15, 49syl2anc 665 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  (bits `  (
( A  x.  B
)  mod  ( 2 ^ ( k  +  1 ) ) ) )  =  ( (bits `  ( A  x.  B
) )  i^i  (
0..^ ( k  +  1 ) ) ) )
5147, 50eqtrd 2470 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( (bits `  A ) smul  (bits `  B ) )  i^i  ( 0..^ ( k  +  1 ) ) )  =  ( (bits `  ( A  x.  B
) )  i^i  (
0..^ ( k  +  1 ) ) ) )
5251eleq2d 2499 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( k  e.  ( ( (bits `  A ) smul  (bits `  B
) )  i^i  (
0..^ ( k  +  1 ) ) )  <-> 
k  e.  ( (bits `  ( A  x.  B
) )  i^i  (
0..^ ( k  +  1 ) ) ) ) )
53 elin 3655 . . . . . 6  |-  ( k  e.  ( ( (bits `  A ) smul  (bits `  B ) )  i^i  ( 0..^ ( k  +  1 ) ) )  <->  ( k  e.  ( (bits `  A
) smul  (bits `  B )
)  /\  k  e.  ( 0..^ ( k  +  1 ) ) ) )
54 elin 3655 . . . . . 6  |-  ( k  e.  ( (bits `  ( A  x.  B
) )  i^i  (
0..^ ( k  +  1 ) ) )  <-> 
( k  e.  (bits `  ( A  x.  B
) )  /\  k  e.  ( 0..^ ( k  +  1 ) ) ) )
5552, 53, 543bitr3g 290 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( ( k  e.  ( (bits `  A ) smul  (bits `  B
) )  /\  k  e.  ( 0..^ ( k  +  1 ) ) )  <->  ( k  e.  (bits `  ( A  x.  B ) )  /\  k  e.  ( 0..^ ( k  +  1 ) ) ) ) )
56 nn0uz 11193 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
5712, 56syl6eleq 2527 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  k  e.  (
ZZ>= `  0 ) )
58 eluzfz2b 11806 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  0
)  <->  k  e.  ( 0 ... k ) )
5957, 58sylib 199 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  k  e.  ( 0 ... k ) )
6012nn0zd 11038 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  k  e.  ZZ )
61 fzval3 11980 . . . . . . . 8  |-  ( k  e.  ZZ  ->  (
0 ... k )  =  ( 0..^ ( k  +  1 ) ) )
6260, 61syl 17 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( 0 ... k )  =  ( 0..^ ( k  +  1 ) ) )
6359, 62eleqtrd 2519 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  k  e.  ( 0..^ ( k  +  1 ) ) )
6463biantrud 509 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( k  e.  ( (bits `  A
) smul  (bits `  B )
)  <->  ( k  e.  ( (bits `  A
) smul  (bits `  B )
)  /\  k  e.  ( 0..^ ( k  +  1 ) ) ) ) )
6563biantrud 509 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( k  e.  (bits `  ( A  x.  B ) )  <->  ( k  e.  (bits `  ( A  x.  B ) )  /\  k  e.  ( 0..^ ( k  +  1 ) ) ) ) )
6655, 64, 653bitr4d 288 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  k  e.  NN0 )  ->  ( k  e.  ( (bits `  A
) smul  (bits `  B )
)  <->  k  e.  (bits `  ( A  x.  B
) ) ) )
6766ex 435 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( k  e.  NN0  ->  ( k  e.  ( (bits `  A ) smul  (bits `  B ) )  <-> 
k  e.  (bits `  ( A  x.  B
) ) ) ) )
686, 9, 67pm5.21ndd 355 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( k  e.  ( (bits `  A ) smul  (bits `  B ) )  <-> 
k  e.  (bits `  ( A  x.  B
) ) ) )
6968eqrdv 2426 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( (bits `  A
) smul  (bits `  B )
)  =  (bits `  ( A  x.  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    i^i cin 3441    C_ wss 3442   ` cfv 5601  (class class class)co 6305   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   ...cfz 11782  ..^cfzo 11913    mod cmo 12093   ^cexp 12269  bitscbits 14367   smul csmu 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-xor 1401  df-tru 1440  df-fal 1443  df-had 1492  df-cad 1505  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-disj 4398  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-clim 13530  df-sum 13731  df-dvds 14284  df-bits 14370  df-sad 14399  df-smu 14424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator