MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smueqlem Structured version   Unicode version

Theorem smueqlem 14161
Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smueq.a  |-  ( ph  ->  A  C_  NN0 )
smueq.b  |-  ( ph  ->  B  C_  NN0 )
smueq.n  |-  ( ph  ->  N  e.  NN0 )
smueq.p  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
smueq.q  |-  Q  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  ( B  i^i  ( 0..^ N ) ) ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
Assertion
Ref Expression
smueqlem  |-  ( ph  ->  ( ( A smul  B
)  i^i  ( 0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
Distinct variable groups:    m, n, p, A    B, m, n, p    m, N, n, p    ph, n
Allowed substitution hints:    ph( m, p)    P( m, n, p)    Q( m, n, p)

Proof of Theorem smueqlem
Dummy variables  k 
i  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smueq.a . . . . . . . 8  |-  ( ph  ->  A  C_  NN0 )
21adantr 463 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  A  C_  NN0 )
3 smueq.b . . . . . . . 8  |-  ( ph  ->  B  C_  NN0 )
43adantr 463 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  B  C_  NN0 )
5 smueq.p . . . . . . 7  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
6 elfzouz 11744 . . . . . . . . 9  |-  ( k  e.  ( 0..^ N )  ->  k  e.  ( ZZ>= `  0 )
)
76adantl 464 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  e.  (
ZZ>= `  0 ) )
8 nn0uz 11053 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
97, 8syl6eleqr 2491 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  e.  NN0 )
109nn0zd 10900 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  e.  ZZ )
1110peano2zd 10905 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  +  1 )  e.  ZZ )
12 smueq.n . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN0 )
1312adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  N  e.  NN0 )
1413nn0zd 10900 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  N  e.  ZZ )
15 elfzolt2 11749 . . . . . . . . . 10  |-  ( k  e.  ( 0..^ N )  ->  k  <  N )
1615adantl 464 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  <  N
)
17 nn0ltp1le 10856 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  N  e.  NN0 )  -> 
( k  <  N  <->  ( k  +  1 )  <_  N ) )
189, 13, 17syl2anc 659 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  < 
N  <->  ( k  +  1 )  <_  N
) )
1916, 18mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  +  1 )  <_  N
)
20 eluz2 11025 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  (
k  +  1 ) )  <->  ( ( k  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( k  +  1 )  <_  N ) )
2111, 14, 19, 20syl3anbrc 1178 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  N  e.  (
ZZ>= `  ( k  +  1 ) ) )
222, 4, 5, 9, 21smuval2 14153 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( A smul  B )  <-> 
k  e.  ( P `
 N ) ) )
2312, 8syl6eleq 2490 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
24 eluzfz2b 11634 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  <->  N  e.  (
0 ... N ) )
2523, 24sylib 196 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( 0 ... N ) )
26 fveq2 5787 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ( P `  x )  =  ( P ` 
0 ) )
2726ineq1d 3626 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P ` 
0 )  i^i  (
0..^ N ) ) )
28 fveq2 5787 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ( Q `  x )  =  ( Q ` 
0 ) )
2928ineq1d 3626 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q ` 
0 )  i^i  (
0..^ N ) ) )
3027, 29eqeq12d 2414 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 0 )  i^i  ( 0..^ N ) )  =  ( ( Q `  0 )  i^i  ( 0..^ N ) ) ) )
3130imbi2d 314 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  0 )  i^i  ( 0..^ N ) )  =  ( ( Q `  0
)  i^i  ( 0..^ N ) ) ) ) )
32 fveq2 5787 . . . . . . . . . . . . . 14  |-  ( x  =  i  ->  ( P `  x )  =  ( P `  i ) )
3332ineq1d 3626 . . . . . . . . . . . . 13  |-  ( x  =  i  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P `  i )  i^i  (
0..^ N ) ) )
34 fveq2 5787 . . . . . . . . . . . . . 14  |-  ( x  =  i  ->  ( Q `  x )  =  ( Q `  i ) )
3534ineq1d 3626 . . . . . . . . . . . . 13  |-  ( x  =  i  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  (
0..^ N ) ) )
3633, 35eqeq12d 2414 . . . . . . . . . . . 12  |-  ( x  =  i  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  ( 0..^ N ) ) ) )
3736imbi2d 314 . . . . . . . . . . 11  |-  ( x  =  i  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i
)  i^i  ( 0..^ N ) ) ) ) )
38 fveq2 5787 . . . . . . . . . . . . . 14  |-  ( x  =  ( i  +  1 )  ->  ( P `  x )  =  ( P `  ( i  +  1 ) ) )
3938ineq1d 3626 . . . . . . . . . . . . 13  |-  ( x  =  ( i  +  1 )  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P `  ( i  +  1 ) )  i^i  (
0..^ N ) ) )
40 fveq2 5787 . . . . . . . . . . . . . 14  |-  ( x  =  ( i  +  1 )  ->  ( Q `  x )  =  ( Q `  ( i  +  1 ) ) )
4140ineq1d 3626 . . . . . . . . . . . . 13  |-  ( x  =  ( i  +  1 )  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q `  ( i  +  1 ) )  i^i  (
0..^ N ) ) )
4239, 41eqeq12d 2414 . . . . . . . . . . . 12  |-  ( x  =  ( i  +  1 )  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  ( i  +  1 ) )  i^i  ( 0..^ N ) ) ) )
4342imbi2d 314 . . . . . . . . . . 11  |-  ( x  =  ( i  +  1 )  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  (
i  +  1 ) )  i^i  ( 0..^ N ) ) ) ) )
44 fveq2 5787 . . . . . . . . . . . . . 14  |-  ( x  =  N  ->  ( P `  x )  =  ( P `  N ) )
4544ineq1d 3626 . . . . . . . . . . . . 13  |-  ( x  =  N  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P `  N )  i^i  (
0..^ N ) ) )
46 fveq2 5787 . . . . . . . . . . . . . 14  |-  ( x  =  N  ->  ( Q `  x )  =  ( Q `  N ) )
4746ineq1d 3626 . . . . . . . . . . . . 13  |-  ( x  =  N  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  (
0..^ N ) ) )
4845, 47eqeq12d 2414 . . . . . . . . . . . 12  |-  ( x  =  N  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  ( 0..^ N ) ) ) )
4948imbi2d 314 . . . . . . . . . . 11  |-  ( x  =  N  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N
)  i^i  ( 0..^ N ) ) ) ) )
501, 3, 5smup0 14150 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P `  0
)  =  (/) )
51 inss1 3645 . . . . . . . . . . . . . . . 16  |-  ( B  i^i  ( 0..^ N ) )  C_  B
5251, 3syl5ss 3441 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  i^i  (
0..^ N ) ) 
C_  NN0 )
53 smueq.q . . . . . . . . . . . . . . 15  |-  Q  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  ( B  i^i  ( 0..^ N ) ) ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
541, 52, 53smup0 14150 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Q `  0
)  =  (/) )
5550, 54eqtr4d 2436 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P `  0
)  =  ( Q `
 0 ) )
5655ineq1d 3626 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ` 
0 )  i^i  (
0..^ N ) )  =  ( ( Q `
 0 )  i^i  ( 0..^ N ) ) )
5756a1i 11 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( ph  ->  ( ( P ` 
0 )  i^i  (
0..^ N ) )  =  ( ( Q `
 0 )  i^i  ( 0..^ N ) ) ) )
58 oveq1 6221 . . . . . . . . . . . . . . 15  |-  ( ( ( P `  i
)  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  (
0..^ N ) )  ->  ( ( ( P `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) )  =  ( ( ( Q `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) ) )
5958ineq1d 3626 . . . . . . . . . . . . . 14  |-  ( ( ( P `  i
)  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  (
0..^ N ) )  ->  ( ( ( ( P `  i
)  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `
 i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
601adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  A  C_  NN0 )
613adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  B  C_  NN0 )
62 elfzonn0 11780 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 0..^ N )  ->  i  e.  NN0 )
6362adantl 464 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  i  e.  NN0 )
6460, 61, 5, 63smupp1 14151 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( P `  ( i  +  1 ) )  =  ( ( P `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } ) )
6564ineq1d 3626 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( P `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( P `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } )  i^i  (
0..^ N ) ) )
661, 3, 5smupf 14149 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  P : NN0 --> ~P NN0 )
67 ffvelrn 5944 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P : NN0 --> ~P NN0  /\  i  e.  NN0 )  ->  ( P `  i
)  e.  ~P NN0 )
6866, 62, 67syl2an 475 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( P `  i )  e.  ~P NN0 )
6968elpwid 3950 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( P `  i )  C_  NN0 )
70 ssrab2 3512 . . . . . . . . . . . . . . . . . 18  |-  { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) } 
C_  NN0
7170a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) } 
C_  NN0 )
7212adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  N  e.  NN0 )
7369, 71, 72sadeq 14143 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( P `  i ) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } )  i^i  (
0..^ N ) )  =  ( ( ( ( P `  i
)  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
7465, 73eqtrd 2433 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( P `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( P `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
7552adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( B  i^i  ( 0..^ N ) ) 
C_  NN0 )
7660, 75, 53, 63smupp1 14151 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( Q `  ( i  +  1 ) )  =  ( ( Q `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) } ) )
7776ineq1d 3626 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( Q `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( Q `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) } )  i^i  ( 0..^ N ) ) )
781, 52, 53smupf 14149 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  Q : NN0 --> ~P NN0 )
79 ffvelrn 5944 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Q : NN0 --> ~P NN0  /\  i  e.  NN0 )  ->  ( Q `  i
)  e.  ~P NN0 )
8078, 62, 79syl2an 475 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( Q `  i )  e.  ~P NN0 )
8180elpwid 3950 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( Q `  i )  C_  NN0 )
82 ssrab2 3512 . . . . . . . . . . . . . . . . . 18  |-  { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) ) ) }  C_  NN0
8382a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) ) ) }  C_  NN0 )
8481, 83, 72sadeq 14143 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( Q `  i ) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) } )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
85 inss2 3646 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( NN0 
i^i  ( 0..^ N ) )  C_  (
0..^ N )
8685sseli 3426 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( NN0  i^i  ( 0..^ N ) )  ->  n  e.  ( 0..^ N ) )
8761adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  B  C_  NN0 )
8887sseld 3429 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  B  ->  (
n  -  i )  e.  NN0 ) )
89 elfzo0 11776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  e.  ( 0..^ N )  <->  ( n  e. 
NN0  /\  N  e.  NN  /\  n  <  N
) )
9089simp2bi 1010 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  ( 0..^ N )  ->  N  e.  NN )
9190adantl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  N  e.  NN )
92 elfzonn0 11780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  e.  ( 0..^ N )  ->  n  e.  NN0 )
9392adantl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  n  e.  NN0 )
9493nn0red 10788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  n  e.  RR )
9563adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  i  e.  NN0 )
9695nn0red 10788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  i  e.  RR )
9794, 96resubcld 9923 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( n  -  i )  e.  RR )
9891nnred 10485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  N  e.  RR )
9995nn0ge0d 10790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  0  <_  i )
10094, 96subge02d 10079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( 0  <_  i  <->  ( n  -  i )  <_  n ) )
10199, 100mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( n  -  i )  <_  n )
102 elfzolt2 11749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  e.  ( 0..^ N )  ->  n  <  N )
103102adantl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  n  <  N )
10497, 94, 98, 101, 103lelttrd 9669 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( n  -  i )  < 
N )
10591, 104jca 530 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( N  e.  NN  /\  ( n  -  i )  < 
N ) )
106 elfzo0 11776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( n  -  i )  e.  ( 0..^ N )  <->  ( ( n  -  i )  e. 
NN0  /\  N  e.  NN  /\  ( n  -  i )  <  N
) )
107 3anass 975 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( n  -  i
)  e.  NN0  /\  N  e.  NN  /\  (
n  -  i )  <  N )  <->  ( (
n  -  i )  e.  NN0  /\  ( N  e.  NN  /\  (
n  -  i )  <  N ) ) )
108106, 107bitri 249 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( n  -  i )  e.  ( 0..^ N )  <->  ( ( n  -  i )  e. 
NN0  /\  ( N  e.  NN  /\  ( n  -  i )  < 
N ) ) )
109108baib 901 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( n  -  i )  e.  NN0  ->  ( ( n  -  i )  e.  ( 0..^ N )  <->  ( N  e.  NN  /\  ( n  -  i )  < 
N ) ) )
110105, 109syl5ibrcom 222 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  NN0  ->  ( n  -  i )  e.  ( 0..^ N ) ) )
11188, 110syld 44 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  B  ->  (
n  -  i )  e.  ( 0..^ N ) ) )
112111pm4.71rd 633 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  B  <->  ( (
n  -  i )  e.  ( 0..^ N )  /\  ( n  -  i )  e.  B ) ) )
113 ancom 448 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( n  -  i
)  e.  ( 0..^ N )  /\  (
n  -  i )  e.  B )  <->  ( (
n  -  i )  e.  B  /\  (
n  -  i )  e.  ( 0..^ N ) ) )
114 elin 3614 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( n  -  i )  e.  ( B  i^i  ( 0..^ N ) )  <-> 
( ( n  -  i )  e.  B  /\  ( n  -  i
)  e.  ( 0..^ N ) ) )
115113, 114bitr4i 252 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( n  -  i
)  e.  ( 0..^ N )  /\  (
n  -  i )  e.  B )  <->  ( n  -  i )  e.  ( B  i^i  (
0..^ N ) ) )
116112, 115syl6rbb 262 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) )  <-> 
( n  -  i
)  e.  B ) )
117116anbi2d 701 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) )  <->  ( i  e.  A  /\  (
n  -  i )  e.  B ) ) )
11886, 117sylan2 472 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( NN0  i^i  (
0..^ N ) ) )  ->  ( (
i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) )  <->  ( i  e.  A  /\  (
n  -  i )  e.  B ) ) )
119118rabbidva 3038 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  { n  e.  ( NN0  i^i  (
0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i )  e.  ( B  i^i  (
0..^ N ) ) ) }  =  {
n  e.  ( NN0 
i^i  ( 0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } )
120 inrab2 3709 . . . . . . . . . . . . . . . . . . 19  |-  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) )  =  {
n  e.  ( NN0 
i^i  ( 0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }
121 inrab2 3709 . . . . . . . . . . . . . . . . . . 19  |-  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) )  =  { n  e.  ( NN0  i^i  ( 0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) }
122119, 120, 1213eqtr4g 2458 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  (
0..^ N ) )  =  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )
123122oveq2d 6230 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( Q `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) ) )  =  ( ( ( Q `
 i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) ) )
124123ineq1d 3626 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( ( Q `  i
)  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
12577, 84, 1243eqtrd 2437 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( Q `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
12674, 125eqeq12d 2414 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( P `  ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  (
i  +  1 ) )  i^i  ( 0..^ N ) )  <->  ( (
( ( P `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
12759, 126syl5ibr 221 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( P `  i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i
)  i^i  ( 0..^ N ) )  -> 
( ( P `  ( i  +  1 ) )  i^i  (
0..^ N ) )  =  ( ( Q `
 ( i  +  1 ) )  i^i  ( 0..^ N ) ) ) )
128127expcom 433 . . . . . . . . . . . 12  |-  ( i  e.  ( 0..^ N )  ->  ( ph  ->  ( ( ( P `
 i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  ( 0..^ N ) )  ->  (
( P `  (
i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  ( i  +  1 ) )  i^i  (
0..^ N ) ) ) ) )
129128a2d 26 . . . . . . . . . . 11  |-  ( i  e.  ( 0..^ N )  ->  ( ( ph  ->  ( ( P `
 i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  ( 0..^ N ) ) )  -> 
( ph  ->  ( ( P `  ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  (
i  +  1 ) )  i^i  ( 0..^ N ) ) ) ) )
13031, 37, 43, 49, 57, 129fzind2 11842 . . . . . . . . . 10  |-  ( N  e.  ( 0 ... N )  ->  ( ph  ->  ( ( P `
 N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  ( 0..^ N ) ) ) )
13125, 130mpcom 36 . . . . . . . . 9  |-  ( ph  ->  ( ( P `  N )  i^i  (
0..^ N ) )  =  ( ( Q `
 N )  i^i  ( 0..^ N ) ) )
132131adantr 463 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( ( P `
 N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  ( 0..^ N ) ) )
133132eleq2d 2462 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( ( P `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( ( Q `  N )  i^i  ( 0..^ N ) ) ) )
134 elin 3614 . . . . . . . . 9  |-  ( k  e.  ( ( P `
 N )  i^i  ( 0..^ N ) )  <->  ( k  e.  ( P `  N
)  /\  k  e.  ( 0..^ N ) ) )
135134rbaib 904 . . . . . . . 8  |-  ( k  e.  ( 0..^ N )  ->  ( k  e.  ( ( P `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( P `
 N ) ) )
136135adantl 464 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( ( P `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( P `
 N ) ) )
137 elin 3614 . . . . . . . . 9  |-  ( k  e.  ( ( Q `
 N )  i^i  ( 0..^ N ) )  <->  ( k  e.  ( Q `  N
)  /\  k  e.  ( 0..^ N ) ) )
138137rbaib 904 . . . . . . . 8  |-  ( k  e.  ( 0..^ N )  ->  ( k  e.  ( ( Q `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( Q `
 N ) ) )
139138adantl 464 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( ( Q `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( Q `
 N ) ) )
140133, 136, 1393bitr3d 283 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( P `  N
)  <->  k  e.  ( Q `  N ) ) )
14152adantr 463 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( B  i^i  ( 0..^ N ) ) 
C_  NN0 )
1422, 141, 53, 13smupval 14159 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( Q `  N )  =  ( ( A  i^i  (
0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) ) )
143142eleq2d 2462 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( Q `  N
)  <->  k  e.  ( ( A  i^i  (
0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) ) ) )
14422, 140, 1433bitrd 279 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( A smul  B )  <-> 
k  e.  ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) ) ) )
145144ex 432 . . . 4  |-  ( ph  ->  ( k  e.  ( 0..^ N )  -> 
( k  e.  ( A smul  B )  <->  k  e.  ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) ) ) ) )
146145pm5.32rd 638 . . 3  |-  ( ph  ->  ( ( k  e.  ( A smul  B )  /\  k  e.  ( 0..^ N ) )  <-> 
( k  e.  ( ( A  i^i  (
0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) )  /\  k  e.  ( 0..^ N ) ) ) )
147 elin 3614 . . 3  |-  ( k  e.  ( ( A smul 
B )  i^i  (
0..^ N ) )  <-> 
( k  e.  ( A smul  B )  /\  k  e.  ( 0..^ N ) ) )
148 elin 3614 . . 3  |-  ( k  e.  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  <->  ( k  e.  ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) )  /\  k  e.  ( 0..^ N ) ) )
149146, 147, 1483bitr4g 288 . 2  |-  ( ph  ->  ( k  e.  ( ( A smul  B )  i^i  ( 0..^ N ) )  <->  k  e.  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
150149eqrdv 2389 1  |-  ( ph  ->  ( ( A smul  B
)  i^i  ( 0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836   {crab 2746    i^i cin 3401    C_ wss 3402   (/)c0 3724   ifcif 3870   ~Pcpw 3940   class class class wbr 4380    |-> cmpt 4438   -->wf 5505   ` cfv 5509  (class class class)co 6214    |-> cmpt2 6216   0cc0 9421   1c1 9422    + caddc 9424    < clt 9557    <_ cle 9558    - cmin 9736   NNcn 10470   NN0cn0 10730   ZZcz 10799   ZZ>=cuz 11019   ...cfz 11611  ..^cfzo 11735    seqcseq 12029   sadd csad 14091   smul csmu 14092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509  ax-inf2 7990  ax-cnex 9477  ax-resscn 9478  ax-1cn 9479  ax-icn 9480  ax-addcl 9481  ax-addrcl 9482  ax-mulcl 9483  ax-mulrcl 9484  ax-mulcom 9485  ax-addass 9486  ax-mulass 9487  ax-distr 9488  ax-i2m1 9489  ax-1ne0 9490  ax-1rid 9491  ax-rnegex 9492  ax-rrecex 9493  ax-cnre 9494  ax-pre-lttri 9495  ax-pre-lttrn 9496  ax-pre-ltadd 9497  ax-pre-mulgt0 9498  ax-pre-sup 9499
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-xor 1363  df-tru 1402  df-fal 1405  df-had 1455  df-cad 1456  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-nel 2590  df-ral 2747  df-rex 2748  df-reu 2749  df-rmo 2750  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-pss 3418  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-tp 3962  df-op 3964  df-uni 4177  df-int 4213  df-iun 4258  df-disj 4352  df-br 4381  df-opab 4439  df-mpt 4440  df-tr 4474  df-eprel 4718  df-id 4722  df-po 4727  df-so 4728  df-fr 4765  df-se 4766  df-we 4767  df-ord 4808  df-on 4809  df-lim 4810  df-suc 4811  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-isom 5518  df-riota 6176  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-om 6618  df-1st 6717  df-2nd 6718  df-recs 6978  df-rdg 7012  df-1o 7066  df-2o 7067  df-oadd 7070  df-er 7247  df-map 7358  df-pm 7359  df-en 7454  df-dom 7455  df-sdom 7456  df-fin 7457  df-sup 7834  df-oi 7868  df-card 8251  df-cda 8479  df-pnf 9559  df-mnf 9560  df-xr 9561  df-ltxr 9562  df-le 9563  df-sub 9738  df-neg 9739  df-div 10142  df-nn 10471  df-2 10529  df-3 10530  df-n0 10731  df-z 10800  df-uz 11020  df-rp 11158  df-fz 11612  df-fzo 11736  df-fl 11847  df-mod 11916  df-seq 12030  df-exp 12089  df-hash 12327  df-cj 12953  df-re 12954  df-im 12955  df-sqrt 13089  df-abs 13090  df-clim 13332  df-sum 13530  df-dvds 14008  df-bits 14093  df-sad 14122  df-smu 14147
This theorem is referenced by:  smueq  14162
  Copyright terms: Public domain W3C validator