MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smueqlem Structured version   Unicode version

Theorem smueqlem 13988
Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smueq.a  |-  ( ph  ->  A  C_  NN0 )
smueq.b  |-  ( ph  ->  B  C_  NN0 )
smueq.n  |-  ( ph  ->  N  e.  NN0 )
smueq.p  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
smueq.q  |-  Q  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  ( B  i^i  ( 0..^ N ) ) ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
Assertion
Ref Expression
smueqlem  |-  ( ph  ->  ( ( A smul  B
)  i^i  ( 0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
Distinct variable groups:    m, n, p, A    B, m, n, p    m, N, n, p    ph, n
Allowed substitution hints:    ph( m, p)    P( m, n, p)    Q( m, n, p)

Proof of Theorem smueqlem
Dummy variables  k 
i  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smueq.a . . . . . . . 8  |-  ( ph  ->  A  C_  NN0 )
21adantr 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  A  C_  NN0 )
3 smueq.b . . . . . . . 8  |-  ( ph  ->  B  C_  NN0 )
43adantr 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  B  C_  NN0 )
5 smueq.p . . . . . . 7  |-  P  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
6 elfzouz 11790 . . . . . . . . 9  |-  ( k  e.  ( 0..^ N )  ->  k  e.  ( ZZ>= `  0 )
)
76adantl 466 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  e.  (
ZZ>= `  0 ) )
8 nn0uz 11105 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
97, 8syl6eleqr 2559 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  e.  NN0 )
109nn0zd 10953 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  e.  ZZ )
1110peano2zd 10958 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  +  1 )  e.  ZZ )
12 smueq.n . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN0 )
1312adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  N  e.  NN0 )
1413nn0zd 10953 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  N  e.  ZZ )
15 elfzolt2 11794 . . . . . . . . . 10  |-  ( k  e.  ( 0..^ N )  ->  k  <  N )
1615adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  <  N
)
17 nn0ltp1le 10909 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  N  e.  NN0 )  -> 
( k  <  N  <->  ( k  +  1 )  <_  N ) )
189, 13, 17syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  < 
N  <->  ( k  +  1 )  <_  N
) )
1916, 18mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  +  1 )  <_  N
)
20 eluz2 11077 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  (
k  +  1 ) )  <->  ( ( k  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( k  +  1 )  <_  N ) )
2111, 14, 19, 20syl3anbrc 1175 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  N  e.  (
ZZ>= `  ( k  +  1 ) ) )
222, 4, 5, 9, 21smuval2 13980 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( A smul  B )  <-> 
k  e.  ( P `
 N ) ) )
2312, 8syl6eleq 2558 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
24 eluzfz2b 11684 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  <->  N  e.  (
0 ... N ) )
2523, 24sylib 196 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( 0 ... N ) )
26 fveq2 5857 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ( P `  x )  =  ( P ` 
0 ) )
2726ineq1d 3692 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P ` 
0 )  i^i  (
0..^ N ) ) )
28 fveq2 5857 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ( Q `  x )  =  ( Q ` 
0 ) )
2928ineq1d 3692 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q ` 
0 )  i^i  (
0..^ N ) ) )
3027, 29eqeq12d 2482 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 0 )  i^i  ( 0..^ N ) )  =  ( ( Q `  0 )  i^i  ( 0..^ N ) ) ) )
3130imbi2d 316 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  0 )  i^i  ( 0..^ N ) )  =  ( ( Q `  0
)  i^i  ( 0..^ N ) ) ) ) )
32 fveq2 5857 . . . . . . . . . . . . . 14  |-  ( x  =  i  ->  ( P `  x )  =  ( P `  i ) )
3332ineq1d 3692 . . . . . . . . . . . . 13  |-  ( x  =  i  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P `  i )  i^i  (
0..^ N ) ) )
34 fveq2 5857 . . . . . . . . . . . . . 14  |-  ( x  =  i  ->  ( Q `  x )  =  ( Q `  i ) )
3534ineq1d 3692 . . . . . . . . . . . . 13  |-  ( x  =  i  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  (
0..^ N ) ) )
3633, 35eqeq12d 2482 . . . . . . . . . . . 12  |-  ( x  =  i  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  ( 0..^ N ) ) ) )
3736imbi2d 316 . . . . . . . . . . 11  |-  ( x  =  i  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i
)  i^i  ( 0..^ N ) ) ) ) )
38 fveq2 5857 . . . . . . . . . . . . . 14  |-  ( x  =  ( i  +  1 )  ->  ( P `  x )  =  ( P `  ( i  +  1 ) ) )
3938ineq1d 3692 . . . . . . . . . . . . 13  |-  ( x  =  ( i  +  1 )  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P `  ( i  +  1 ) )  i^i  (
0..^ N ) ) )
40 fveq2 5857 . . . . . . . . . . . . . 14  |-  ( x  =  ( i  +  1 )  ->  ( Q `  x )  =  ( Q `  ( i  +  1 ) ) )
4140ineq1d 3692 . . . . . . . . . . . . 13  |-  ( x  =  ( i  +  1 )  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q `  ( i  +  1 ) )  i^i  (
0..^ N ) ) )
4239, 41eqeq12d 2482 . . . . . . . . . . . 12  |-  ( x  =  ( i  +  1 )  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  ( i  +  1 ) )  i^i  ( 0..^ N ) ) ) )
4342imbi2d 316 . . . . . . . . . . 11  |-  ( x  =  ( i  +  1 )  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  (
i  +  1 ) )  i^i  ( 0..^ N ) ) ) ) )
44 fveq2 5857 . . . . . . . . . . . . . 14  |-  ( x  =  N  ->  ( P `  x )  =  ( P `  N ) )
4544ineq1d 3692 . . . . . . . . . . . . 13  |-  ( x  =  N  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P `  N )  i^i  (
0..^ N ) ) )
46 fveq2 5857 . . . . . . . . . . . . . 14  |-  ( x  =  N  ->  ( Q `  x )  =  ( Q `  N ) )
4746ineq1d 3692 . . . . . . . . . . . . 13  |-  ( x  =  N  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  (
0..^ N ) ) )
4845, 47eqeq12d 2482 . . . . . . . . . . . 12  |-  ( x  =  N  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  ( 0..^ N ) ) ) )
4948imbi2d 316 . . . . . . . . . . 11  |-  ( x  =  N  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N
)  i^i  ( 0..^ N ) ) ) ) )
501, 3, 5smup0 13977 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P `  0
)  =  (/) )
51 inss1 3711 . . . . . . . . . . . . . . . 16  |-  ( B  i^i  ( 0..^ N ) )  C_  B
5251, 3syl5ss 3508 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  i^i  (
0..^ N ) ) 
C_  NN0 )
53 smueq.q . . . . . . . . . . . . . . 15  |-  Q  =  seq 0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  ( B  i^i  ( 0..^ N ) ) ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
541, 52, 53smup0 13977 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Q `  0
)  =  (/) )
5550, 54eqtr4d 2504 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P `  0
)  =  ( Q `
 0 ) )
5655ineq1d 3692 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ` 
0 )  i^i  (
0..^ N ) )  =  ( ( Q `
 0 )  i^i  ( 0..^ N ) ) )
5756a1i 11 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( ph  ->  ( ( P ` 
0 )  i^i  (
0..^ N ) )  =  ( ( Q `
 0 )  i^i  ( 0..^ N ) ) ) )
58 oveq1 6282 . . . . . . . . . . . . . . 15  |-  ( ( ( P `  i
)  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  (
0..^ N ) )  ->  ( ( ( P `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) )  =  ( ( ( Q `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) ) )
5958ineq1d 3692 . . . . . . . . . . . . . 14  |-  ( ( ( P `  i
)  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  (
0..^ N ) )  ->  ( ( ( ( P `  i
)  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `
 i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
601adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  A  C_  NN0 )
613adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  B  C_  NN0 )
62 elfzouz 11790 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 0..^ N )  ->  i  e.  ( ZZ>= `  0 )
)
6362, 8syl6eleqr 2559 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 0..^ N )  ->  i  e.  NN0 )
6463adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  i  e.  NN0 )
6560, 61, 5, 64smupp1 13978 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( P `  ( i  +  1 ) )  =  ( ( P `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } ) )
6665ineq1d 3692 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( P `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( P `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } )  i^i  (
0..^ N ) ) )
671, 3, 5smupf 13976 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  P : NN0 --> ~P NN0 )
68 ffvelrn 6010 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P : NN0 --> ~P NN0  /\  i  e.  NN0 )  ->  ( P `  i
)  e.  ~P NN0 )
6967, 63, 68syl2an 477 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( P `  i )  e.  ~P NN0 )
7069elpwid 4013 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( P `  i )  C_  NN0 )
71 ssrab2 3578 . . . . . . . . . . . . . . . . . 18  |-  { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) } 
C_  NN0
7271a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) } 
C_  NN0 )
7312adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  N  e.  NN0 )
7470, 72, 73sadeq 13970 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( P `  i ) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } )  i^i  (
0..^ N ) )  =  ( ( ( ( P `  i
)  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
7566, 74eqtrd 2501 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( P `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( P `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
7652adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( B  i^i  ( 0..^ N ) ) 
C_  NN0 )
7760, 76, 53, 64smupp1 13978 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( Q `  ( i  +  1 ) )  =  ( ( Q `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) } ) )
7877ineq1d 3692 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( Q `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( Q `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) } )  i^i  ( 0..^ N ) ) )
791, 52, 53smupf 13976 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  Q : NN0 --> ~P NN0 )
80 ffvelrn 6010 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Q : NN0 --> ~P NN0  /\  i  e.  NN0 )  ->  ( Q `  i
)  e.  ~P NN0 )
8179, 63, 80syl2an 477 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( Q `  i )  e.  ~P NN0 )
8281elpwid 4013 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( Q `  i )  C_  NN0 )
83 ssrab2 3578 . . . . . . . . . . . . . . . . . 18  |-  { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) ) ) }  C_  NN0
8483a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) ) ) }  C_  NN0 )
8582, 84, 73sadeq 13970 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( Q `  i ) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) } )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
86 inss2 3712 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( NN0 
i^i  ( 0..^ N ) )  C_  (
0..^ N )
8786sseli 3493 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( NN0  i^i  ( 0..^ N ) )  ->  n  e.  ( 0..^ N ) )
8861adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  B  C_  NN0 )
8988sseld 3496 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  B  ->  (
n  -  i )  e.  NN0 ) )
90 elfzo0 11820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  e.  ( 0..^ N )  <->  ( n  e. 
NN0  /\  N  e.  NN  /\  n  <  N
) )
9190simp2bi 1007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  ( 0..^ N )  ->  N  e.  NN )
9291adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  N  e.  NN )
9390simp1bi 1006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  e.  ( 0..^ N )  ->  n  e.  NN0 )
9493adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  n  e.  NN0 )
9594nn0red 10842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  n  e.  RR )
9664adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  i  e.  NN0 )
9796nn0red 10842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  i  e.  RR )
9895, 97resubcld 9976 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( n  -  i )  e.  RR )
9992nnred 10540 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  N  e.  RR )
10096nn0ge0d 10844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  0  <_  i )
10195, 97subge02d 10133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( 0  <_  i  <->  ( n  -  i )  <_  n ) )
102100, 101mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( n  -  i )  <_  n )
103 elfzolt2 11794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  e.  ( 0..^ N )  ->  n  <  N )
104103adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  n  <  N )
10598, 95, 99, 102, 104lelttrd 9728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( n  -  i )  < 
N )
10692, 105jca 532 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( N  e.  NN  /\  ( n  -  i )  < 
N ) )
107 elfzo0 11820 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( n  -  i )  e.  ( 0..^ N )  <->  ( ( n  -  i )  e. 
NN0  /\  N  e.  NN  /\  ( n  -  i )  <  N
) )
108 3anass 972 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( n  -  i
)  e.  NN0  /\  N  e.  NN  /\  (
n  -  i )  <  N )  <->  ( (
n  -  i )  e.  NN0  /\  ( N  e.  NN  /\  (
n  -  i )  <  N ) ) )
109107, 108bitri 249 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( n  -  i )  e.  ( 0..^ N )  <->  ( ( n  -  i )  e. 
NN0  /\  ( N  e.  NN  /\  ( n  -  i )  < 
N ) ) )
110109baib 898 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( n  -  i )  e.  NN0  ->  ( ( n  -  i )  e.  ( 0..^ N )  <->  ( N  e.  NN  /\  ( n  -  i )  < 
N ) ) )
111106, 110syl5ibrcom 222 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  NN0  ->  ( n  -  i )  e.  ( 0..^ N ) ) )
11289, 111syld 44 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  B  ->  (
n  -  i )  e.  ( 0..^ N ) ) )
113112pm4.71rd 635 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  B  <->  ( (
n  -  i )  e.  ( 0..^ N )  /\  ( n  -  i )  e.  B ) ) )
114 ancom 450 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( n  -  i
)  e.  ( 0..^ N )  /\  (
n  -  i )  e.  B )  <->  ( (
n  -  i )  e.  B  /\  (
n  -  i )  e.  ( 0..^ N ) ) )
115 elin 3680 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( n  -  i )  e.  ( B  i^i  ( 0..^ N ) )  <-> 
( ( n  -  i )  e.  B  /\  ( n  -  i
)  e.  ( 0..^ N ) ) )
116114, 115bitr4i 252 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( n  -  i
)  e.  ( 0..^ N )  /\  (
n  -  i )  e.  B )  <->  ( n  -  i )  e.  ( B  i^i  (
0..^ N ) ) )
117113, 116syl6rbb 262 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) )  <-> 
( n  -  i
)  e.  B ) )
118117anbi2d 703 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) )  <->  ( i  e.  A  /\  (
n  -  i )  e.  B ) ) )
11987, 118sylan2 474 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( NN0  i^i  (
0..^ N ) ) )  ->  ( (
i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) )  <->  ( i  e.  A  /\  (
n  -  i )  e.  B ) ) )
120119rabbidva 3097 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  { n  e.  ( NN0  i^i  (
0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i )  e.  ( B  i^i  (
0..^ N ) ) ) }  =  {
n  e.  ( NN0 
i^i  ( 0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } )
121 inrab2 3764 . . . . . . . . . . . . . . . . . . 19  |-  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) )  =  {
n  e.  ( NN0 
i^i  ( 0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }
122 inrab2 3764 . . . . . . . . . . . . . . . . . . 19  |-  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) )  =  { n  e.  ( NN0  i^i  ( 0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) }
123120, 121, 1223eqtr4g 2526 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  (
0..^ N ) )  =  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )
124123oveq2d 6291 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( Q `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) ) )  =  ( ( ( Q `
 i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) ) )
125124ineq1d 3692 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( ( Q `  i
)  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
12678, 85, 1253eqtrd 2505 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( Q `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
12775, 126eqeq12d 2482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( P `  ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  (
i  +  1 ) )  i^i  ( 0..^ N ) )  <->  ( (
( ( P `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
12859, 127syl5ibr 221 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( P `  i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i
)  i^i  ( 0..^ N ) )  -> 
( ( P `  ( i  +  1 ) )  i^i  (
0..^ N ) )  =  ( ( Q `
 ( i  +  1 ) )  i^i  ( 0..^ N ) ) ) )
129128expcom 435 . . . . . . . . . . . 12  |-  ( i  e.  ( 0..^ N )  ->  ( ph  ->  ( ( ( P `
 i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  ( 0..^ N ) )  ->  (
( P `  (
i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  ( i  +  1 ) )  i^i  (
0..^ N ) ) ) ) )
130129a2d 26 . . . . . . . . . . 11  |-  ( i  e.  ( 0..^ N )  ->  ( ( ph  ->  ( ( P `
 i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  ( 0..^ N ) ) )  -> 
( ph  ->  ( ( P `  ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  (
i  +  1 ) )  i^i  ( 0..^ N ) ) ) ) )
13131, 37, 43, 49, 57, 130fzind2 11881 . . . . . . . . . 10  |-  ( N  e.  ( 0 ... N )  ->  ( ph  ->  ( ( P `
 N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  ( 0..^ N ) ) ) )
13225, 131mpcom 36 . . . . . . . . 9  |-  ( ph  ->  ( ( P `  N )  i^i  (
0..^ N ) )  =  ( ( Q `
 N )  i^i  ( 0..^ N ) ) )
133132adantr 465 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( ( P `
 N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  ( 0..^ N ) ) )
134133eleq2d 2530 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( ( P `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( ( Q `  N )  i^i  ( 0..^ N ) ) ) )
135 elin 3680 . . . . . . . . 9  |-  ( k  e.  ( ( P `
 N )  i^i  ( 0..^ N ) )  <->  ( k  e.  ( P `  N
)  /\  k  e.  ( 0..^ N ) ) )
136135rbaib 900 . . . . . . . 8  |-  ( k  e.  ( 0..^ N )  ->  ( k  e.  ( ( P `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( P `
 N ) ) )
137136adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( ( P `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( P `
 N ) ) )
138 elin 3680 . . . . . . . . 9  |-  ( k  e.  ( ( Q `
 N )  i^i  ( 0..^ N ) )  <->  ( k  e.  ( Q `  N
)  /\  k  e.  ( 0..^ N ) ) )
139138rbaib 900 . . . . . . . 8  |-  ( k  e.  ( 0..^ N )  ->  ( k  e.  ( ( Q `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( Q `
 N ) ) )
140139adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( ( Q `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( Q `
 N ) ) )
141134, 137, 1403bitr3d 283 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( P `  N
)  <->  k  e.  ( Q `  N ) ) )
14252adantr 465 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( B  i^i  ( 0..^ N ) ) 
C_  NN0 )
1432, 142, 53, 13smupval 13986 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( Q `  N )  =  ( ( A  i^i  (
0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) ) )
144143eleq2d 2530 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( Q `  N
)  <->  k  e.  ( ( A  i^i  (
0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) ) ) )
14522, 141, 1443bitrd 279 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( A smul  B )  <-> 
k  e.  ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) ) ) )
146145ex 434 . . . 4  |-  ( ph  ->  ( k  e.  ( 0..^ N )  -> 
( k  e.  ( A smul  B )  <->  k  e.  ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) ) ) ) )
147146pm5.32rd 640 . . 3  |-  ( ph  ->  ( ( k  e.  ( A smul  B )  /\  k  e.  ( 0..^ N ) )  <-> 
( k  e.  ( ( A  i^i  (
0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) )  /\  k  e.  ( 0..^ N ) ) ) )
148 elin 3680 . . 3  |-  ( k  e.  ( ( A smul 
B )  i^i  (
0..^ N ) )  <-> 
( k  e.  ( A smul  B )  /\  k  e.  ( 0..^ N ) ) )
149 elin 3680 . . 3  |-  ( k  e.  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  <->  ( k  e.  ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) )  /\  k  e.  ( 0..^ N ) ) )
150147, 148, 1493bitr4g 288 . 2  |-  ( ph  ->  ( k  e.  ( ( A smul  B )  i^i  ( 0..^ N ) )  <->  k  e.  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
151150eqrdv 2457 1  |-  ( ph  ->  ( ( A smul  B
)  i^i  ( 0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   {crab 2811    i^i cin 3468    C_ wss 3469   (/)c0 3778   ifcif 3932   ~Pcpw 4003   class class class wbr 4440    |-> cmpt 4498   -->wf 5575   ` cfv 5579  (class class class)co 6275    |-> cmpt2 6277   0cc0 9481   1c1 9482    + caddc 9484    < clt 9617    <_ cle 9618    - cmin 9794   NNcn 10525   NN0cn0 10784   ZZcz 10853   ZZ>=cuz 11071   ...cfz 11661  ..^cfzo 11781    seqcseq 12063   sadd csad 13918   smul csmu 13919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-xor 1356  df-tru 1377  df-fal 1380  df-had 1426  df-cad 1427  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-sum 13458  df-dvds 13837  df-bits 13920  df-sad 13949  df-smu 13974
This theorem is referenced by:  smueq  13989
  Copyright terms: Public domain W3C validator