MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smores3 Structured version   Unicode version

Theorem smores3 7084
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
smores3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( A  |`  C ) )

Proof of Theorem smores3
StepHypRef Expression
1 dmres 5144 . . . . . 6  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
2 incom 3655 . . . . . 6  |-  ( B  i^i  dom  A )  =  ( dom  A  i^i  B )
31, 2eqtri 2451 . . . . 5  |-  dom  ( A  |`  B )  =  ( dom  A  i^i  B )
43eleq2i 2499 . . . 4  |-  ( C  e.  dom  ( A  |`  B )  <->  C  e.  ( dom  A  i^i  B
) )
5 smores 7083 . . . 4  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  dom  ( A  |`  B ) )  ->  Smo  ( ( A  |`  B )  |`  C ) )
64, 5sylan2br 478 . . 3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B ) )  ->  Smo  ( ( A  |`  B )  |`  C ) )
763adant3 1025 . 2  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( ( A  |`  B )  |`  C ) )
8 inss2 3683 . . . . . 6  |-  ( dom 
A  i^i  B )  C_  B
98sseli 3460 . . . . 5  |-  ( C  e.  ( dom  A  i^i  B )  ->  C  e.  B )
10 ordelss 5458 . . . . . 6  |-  ( ( Ord  B  /\  C  e.  B )  ->  C  C_  B )
1110ancoms 454 . . . . 5  |-  ( ( C  e.  B  /\  Ord  B )  ->  C  C_  B )
129, 11sylan 473 . . . 4  |-  ( ( C  e.  ( dom 
A  i^i  B )  /\  Ord  B )  ->  C  C_  B )
13123adant1 1023 . . 3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  C  C_  B
)
14 resabs1 5152 . . 3  |-  ( C 
C_  B  ->  (
( A  |`  B )  |`  C )  =  ( A  |`  C )
)
15 smoeq 7081 . . 3  |-  ( ( ( A  |`  B )  |`  C )  =  ( A  |`  C )  ->  ( Smo  ( ( A  |`  B )  |`  C )  <->  Smo  ( A  |`  C ) ) )
1613, 14, 153syl 18 . 2  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  ( Smo  ( ( A  |`  B )  |`  C )  <->  Smo  ( A  |`  C ) ) )
177, 16mpbid 213 1  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( A  |`  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ w3a 982    = wceq 1437    e. wcel 1872    i^i cin 3435    C_ wss 3436   dom cdm 4853    |` cres 4855   Ord word 5441   Smo wsmo 7076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pr 4660
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-tr 4519  df-eprel 4764  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ord 5445  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-smo 7077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator