MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoord Structured version   Unicode version

Theorem smoord 6822
Description: A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoord  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  e.  D  <->  ( F `  C )  e.  ( F `  D ) ) )

Proof of Theorem smoord
StepHypRef Expression
1 smodm2 6812 . . . 4  |-  ( ( F  Fn  A  /\  Smo  F )  ->  Ord  A )
21adantr 462 . . 3  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  Ord  A )
3 simprl 750 . . 3  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  C  e.  A )
4 ordelord 4737 . . 3  |-  ( ( Ord  A  /\  C  e.  A )  ->  Ord  C )
52, 3, 4syl2anc 656 . 2  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  Ord  C )
6 simprr 751 . . 3  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  D  e.  A )
7 ordelord 4737 . . 3  |-  ( ( Ord  A  /\  D  e.  A )  ->  Ord  D )
82, 6, 7syl2anc 656 . 2  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  Ord  D )
9 ordtri3or 4747 . . 3  |-  ( ( Ord  C  /\  Ord  D )  ->  ( C  e.  D  \/  C  =  D  \/  D  e.  C ) )
10 simp3 985 . . . . . 6  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  C  e.  D )  ->  C  e.  D )
11 smoel2 6820 . . . . . . . . 9  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( D  e.  A  /\  C  e.  D
) )  ->  ( F `  C )  e.  ( F `  D
) )
1211expr 612 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  D  e.  A )  ->  ( C  e.  D  ->  ( F `  C
)  e.  ( F `
 D ) ) )
1312adantrl 710 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  e.  D  ->  ( F `  C )  e.  ( F `  D ) ) )
14133impia 1179 . . . . . 6  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  C  e.  D )  ->  ( F `  C )  e.  ( F `  D
) )
1510, 142thd 240 . . . . 5  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  C  e.  D )  ->  ( C  e.  D  <->  ( F `  C )  e.  ( F `  D ) ) )
16153expia 1184 . . . 4  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  e.  D  ->  ( C  e.  D  <->  ( F `  C )  e.  ( F `  D ) ) ) )
17 ordirr 4733 . . . . . . . . 9  |-  ( Ord 
C  ->  -.  C  e.  C )
185, 17syl 16 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  -.  C  e.  C )
19183adant3 1003 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  C  =  D )  ->  -.  C  e.  C )
20 simp3 985 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  C  =  D )  ->  C  =  D )
2119, 20neleqtrd 2536 . . . . . 6  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  C  =  D )  ->  -.  C  e.  D )
22 smofvon2 6813 . . . . . . . . . 10  |-  ( Smo 
F  ->  ( F `  C )  e.  On )
2322ad2antlr 721 . . . . . . . . 9  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( F `  C )  e.  On )
24 eloni 4725 . . . . . . . . 9  |-  ( ( F `  C )  e.  On  ->  Ord  ( F `  C ) )
25 ordirr 4733 . . . . . . . . 9  |-  ( Ord  ( F `  C
)  ->  -.  ( F `  C )  e.  ( F `  C
) )
2623, 24, 253syl 20 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  -.  ( F `  C )  e.  ( F `  C ) )
27263adant3 1003 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  C  =  D )  ->  -.  ( F `  C )  e.  ( F `  C ) )
2820fveq2d 5692 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  C  =  D )  ->  ( F `  C )  =  ( F `  D ) )
2927, 28neleqtrd 2536 . . . . . 6  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  C  =  D )  ->  -.  ( F `  C )  e.  ( F `  D ) )
3021, 292falsed 351 . . . . 5  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  C  =  D )  ->  ( C  e.  D  <->  ( F `  C )  e.  ( F `  D ) ) )
31303expia 1184 . . . 4  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  =  D  ->  ( C  e.  D  <->  ( F `  C )  e.  ( F `  D ) ) ) )
3283adant3 1003 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  D  e.  C )  ->  Ord  D )
33 ordn2lp 4735 . . . . . . . 8  |-  ( Ord 
D  ->  -.  ( D  e.  C  /\  C  e.  D )
)
3432, 33syl 16 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  D  e.  C )  ->  -.  ( D  e.  C  /\  C  e.  D
) )
35 pm3.2 445 . . . . . . . 8  |-  ( D  e.  C  ->  ( C  e.  D  ->  ( D  e.  C  /\  C  e.  D )
) )
36353ad2ant3 1006 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  D  e.  C )  ->  ( C  e.  D  ->  ( D  e.  C  /\  C  e.  D )
) )
3734, 36mtod 177 . . . . . 6  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  D  e.  C )  ->  -.  C  e.  D )
3823, 24syl 16 . . . . . . . . 9  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  Ord  ( F `  C ) )
39383adant3 1003 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  D  e.  C )  ->  Ord  ( F `  C ) )
40 ordn2lp 4735 . . . . . . . 8  |-  ( Ord  ( F `  C
)  ->  -.  (
( F `  C
)  e.  ( F `
 D )  /\  ( F `  D )  e.  ( F `  C ) ) )
4139, 40syl 16 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  D  e.  C )  ->  -.  ( ( F `  C )  e.  ( F `  D )  /\  ( F `  D )  e.  ( F `  C ) ) )
42 smoel2 6820 . . . . . . . . . 10  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  C
) )  ->  ( F `  D )  e.  ( F `  C
) )
4342adantrlr 717 . . . . . . . . 9  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( ( C  e.  A  /\  D  e.  A )  /\  D  e.  C ) )  -> 
( F `  D
)  e.  ( F `
 C ) )
44433impb 1178 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  D  e.  C )  ->  ( F `  D )  e.  ( F `  C
) )
45 pm3.21 446 . . . . . . . 8  |-  ( ( F `  D )  e.  ( F `  C )  ->  (
( F `  C
)  e.  ( F `
 D )  -> 
( ( F `  C )  e.  ( F `  D )  /\  ( F `  D )  e.  ( F `  C ) ) ) )
4644, 45syl 16 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  D  e.  C )  ->  (
( F `  C
)  e.  ( F `
 D )  -> 
( ( F `  C )  e.  ( F `  D )  /\  ( F `  D )  e.  ( F `  C ) ) ) )
4741, 46mtod 177 . . . . . 6  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  D  e.  C )  ->  -.  ( F `  C )  e.  ( F `  D ) )
4837, 472falsed 351 . . . . 5  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
)  /\  D  e.  C )  ->  ( C  e.  D  <->  ( F `  C )  e.  ( F `  D ) ) )
49483expia 1184 . . . 4  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( D  e.  C  ->  ( C  e.  D  <->  ( F `  C )  e.  ( F `  D ) ) ) )
5016, 31, 493jaod 1277 . . 3  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( C  e.  D  \/  C  =  D  \/  D  e.  C
)  ->  ( C  e.  D  <->  ( F `  C )  e.  ( F `  D ) ) ) )
519, 50syl5 32 . 2  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( Ord  C  /\  Ord  D )  ->  ( C  e.  D  <->  ( F `  C )  e.  ( F `  D ) ) ) )
525, 8, 51mp2and 674 1  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  e.  D  <->  ( F `  C )  e.  ( F `  D ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 959    /\ w3a 960    = wceq 1364    e. wcel 1761   Ord word 4714   Oncon0 4715    Fn wfn 5410   ` cfv 5415   Smo wsmo 6802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-fv 5423  df-smo 6803
This theorem is referenced by:  smoword  6823  smoiso2  6826
  Copyright terms: Public domain W3C validator