MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoiso2 Structured version   Visualization version   Unicode version

Theorem smoiso2 7085
Description: The strictly monotone ordinal functions are also epsilon isomorphisms of subclasses of  On. (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
smoiso2  |-  ( ( Ord  A  /\  B  C_  On )  ->  (
( F : A -onto-> B  /\  Smo  F )  <-> 
F  Isom  _E  ,  _E  ( A ,  B ) ) )

Proof of Theorem smoiso2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 5791 . . . . . . 7  |-  ( F : A -onto-> B  ->  F : A --> B )
2 smo11 7080 . . . . . . 7  |-  ( ( F : A --> B  /\  Smo  F )  ->  F : A -1-1-> B )
31, 2sylan 474 . . . . . 6  |-  ( ( F : A -onto-> B  /\  Smo  F )  ->  F : A -1-1-> B )
4 simpl 459 . . . . . 6  |-  ( ( F : A -onto-> B  /\  Smo  F )  ->  F : A -onto-> B )
5 df-f1o 5588 . . . . . 6  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
63, 4, 5sylanbrc 669 . . . . 5  |-  ( ( F : A -onto-> B  /\  Smo  F )  ->  F : A -1-1-onto-> B )
76adantl 468 . . . 4  |-  ( ( ( Ord  A  /\  B  C_  On )  /\  ( F : A -onto-> B  /\  Smo  F ) )  ->  F : A -1-1-onto-> B
)
8 fofn 5793 . . . . . 6  |-  ( F : A -onto-> B  ->  F  Fn  A )
9 smoord 7081 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x  e.  y  <->  ( F `  x )  e.  ( F `  y ) ) )
10 epel 4747 . . . . . . . 8  |-  ( x  _E  y  <->  x  e.  y )
11 fvex 5873 . . . . . . . . 9  |-  ( F `
 y )  e. 
_V
1211epelc 4746 . . . . . . . 8  |-  ( ( F `  x )  _E  ( F `  y )  <->  ( F `  x )  e.  ( F `  y ) )
139, 10, 123bitr4g 292 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x  _E  y  <->  ( F `  x )  _E  ( F `  y )
) )
1413ralrimivva 2808 . . . . . 6  |-  ( ( F  Fn  A  /\  Smo  F )  ->  A. x  e.  A  A. y  e.  A  ( x  _E  y  <->  ( F `  x )  _E  ( F `  y )
) )
158, 14sylan 474 . . . . 5  |-  ( ( F : A -onto-> B  /\  Smo  F )  ->  A. x  e.  A  A. y  e.  A  ( x  _E  y  <->  ( F `  x )  _E  ( F `  y ) ) )
1615adantl 468 . . . 4  |-  ( ( ( Ord  A  /\  B  C_  On )  /\  ( F : A -onto-> B  /\  Smo  F ) )  ->  A. x  e.  A  A. y  e.  A  ( x  _E  y  <->  ( F `  x )  _E  ( F `  y ) ) )
17 df-isom 5590 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  <-> 
( F : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x  _E  y  <->  ( F `  x )  _E  ( F `  y ) ) ) )
187, 16, 17sylanbrc 669 . . 3  |-  ( ( ( Ord  A  /\  B  C_  On )  /\  ( F : A -onto-> B  /\  Smo  F ) )  ->  F  Isom  _E  ,  _E  ( A ,  B
) )
1918ex 436 . 2  |-  ( ( Ord  A  /\  B  C_  On )  ->  (
( F : A -onto-> B  /\  Smo  F )  ->  F  Isom  _E  ,  _E  ( A ,  B
) ) )
20 isof1o 6214 . . . . . . 7  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A -1-1-onto-> B
)
21 f1ofo 5819 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
2220, 21syl 17 . . . . . 6  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A -onto-> B )
23223ad2ant1 1028 . . . . 5  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  F : A -onto-> B )
24 smoiso 7078 . . . . 5  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Smo  F )
2523, 24jca 535 . . . 4  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  -> 
( F : A -onto-> B  /\  Smo  F ) )
26253expib 1210 . . 3  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( Ord 
A  /\  B  C_  On )  ->  ( F : A -onto-> B  /\  Smo  F
) ) )
2726com12 32 . 2  |-  ( ( Ord  A  /\  B  C_  On )  ->  ( F  Isom  _E  ,  _E  ( A ,  B )  ->  ( F : A -onto-> B  /\  Smo  F
) ) )
2819, 27impbid 194 1  |-  ( ( Ord  A  /\  B  C_  On )  ->  (
( F : A -onto-> B  /\  Smo  F )  <-> 
F  Isom  _E  ,  _E  ( A ,  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    e. wcel 1886   A.wral 2736    C_ wss 3403   class class class wbr 4401    _E cep 4742   Ord word 5421   Oncon0 5422    Fn wfn 5576   -->wf 5577   -1-1->wf1 5578   -onto->wfo 5579   -1-1-onto->wf1o 5580   ` cfv 5581    Isom wiso 5582   Smo wsmo 7061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-sbc 3267  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-ord 5425  df-on 5426  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-smo 7062
This theorem is referenced by:  oismo  8052  cofsmo  8696
  Copyright terms: Public domain W3C validator