MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoel2 Structured version   Visualization version   Unicode version

Theorem smoel2 7068
Description: A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smoel2  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B
) )  ->  ( F `  C )  e.  ( F `  B
) )

Proof of Theorem smoel2
StepHypRef Expression
1 fndm 5656 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
21eleq2d 2514 . . . . 5  |-  ( F  Fn  A  ->  ( B  e.  dom  F  <->  B  e.  A ) )
32anbi1d 716 . . . 4  |-  ( F  Fn  A  ->  (
( B  e.  dom  F  /\  C  e.  B
)  <->  ( B  e.  A  /\  C  e.  B ) ) )
43biimprd 231 . . 3  |-  ( F  Fn  A  ->  (
( B  e.  A  /\  C  e.  B
)  ->  ( B  e.  dom  F  /\  C  e.  B ) ) )
5 smoel 7065 . . . 4  |-  ( ( Smo  F  /\  B  e.  dom  F  /\  C  e.  B )  ->  ( F `  C )  e.  ( F `  B
) )
653expib 1213 . . 3  |-  ( Smo 
F  ->  ( ( B  e.  dom  F  /\  C  e.  B )  ->  ( F `  C
)  e.  ( F `
 B ) ) )
74, 6sylan9 667 . 2  |-  ( ( F  Fn  A  /\  Smo  F )  ->  (
( B  e.  A  /\  C  e.  B
)  ->  ( F `  C )  e.  ( F `  B ) ) )
87imp 435 1  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B
) )  ->  ( F `  C )  e.  ( F `  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    e. wcel 1890   dom cdm 4811    Fn wfn 5555   ` cfv 5560   Smo wsmo 7050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1672  ax-4 1685  ax-5 1761  ax-6 1808  ax-7 1854  ax-10 1918  ax-11 1923  ax-12 1936  ax-13 2091  ax-ext 2431
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 988  df-tru 1450  df-ex 1667  df-nf 1671  df-sb 1801  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3014  df-dif 3374  df-un 3376  df-in 3378  df-ss 3385  df-nul 3699  df-if 3849  df-sn 3936  df-pr 3938  df-op 3942  df-uni 4168  df-br 4374  df-tr 4469  df-ord 5404  df-iota 5524  df-fn 5563  df-fv 5568  df-smo 7051
This theorem is referenced by:  smo11  7069  smoord  7070  smogt  7072  cofsmo  8685
  Copyright terms: Public domain W3C validator