MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoel Structured version   Unicode version

Theorem smoel 7063
Description: If  x is less than  y then a strictly monotone function's value will be strictly less at  x than at  y. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoel  |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A )  ->  ( B `  C )  e.  ( B `  A
) )

Proof of Theorem smoel
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smodm 7054 . . . . 5  |-  ( Smo 
B  ->  Ord  dom  B
)
2 ordtr1 5452 . . . . . . 7  |-  ( Ord 
dom  B  ->  ( ( C  e.  A  /\  A  e.  dom  B )  ->  C  e.  dom  B ) )
32ancomsd 452 . . . . . 6  |-  ( Ord 
dom  B  ->  ( ( A  e.  dom  B  /\  C  e.  A
)  ->  C  e.  dom  B ) )
43expdimp 435 . . . . 5  |-  ( ( Ord  dom  B  /\  A  e.  dom  B )  ->  ( C  e.  A  ->  C  e.  dom  B ) )
51, 4sylan 469 . . . 4  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  C  e.  dom  B
) )
6 df-smo 7049 . . . . . 6  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
7 eleq1 2474 . . . . . . . . . . 11  |-  ( x  =  C  ->  (
x  e.  y  <->  C  e.  y ) )
8 fveq2 5848 . . . . . . . . . . . 12  |-  ( x  =  C  ->  ( B `  x )  =  ( B `  C ) )
98eleq1d 2471 . . . . . . . . . . 11  |-  ( x  =  C  ->  (
( B `  x
)  e.  ( B `
 y )  <->  ( B `  C )  e.  ( B `  y ) ) )
107, 9imbi12d 318 . . . . . . . . . 10  |-  ( x  =  C  ->  (
( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  ( C  e.  y  ->  ( B `  C )  e.  ( B `  y ) ) ) )
11 eleq2 2475 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( C  e.  y  <->  C  e.  A ) )
12 fveq2 5848 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( B `  y )  =  ( B `  A ) )
1312eleq2d 2472 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( B `  C
)  e.  ( B `
 y )  <->  ( B `  C )  e.  ( B `  A ) ) )
1411, 13imbi12d 318 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( C  e.  y  ->  ( B `  C )  e.  ( B `  y ) )  <->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1510, 14rspc2v 3168 . . . . . . . . 9  |-  ( ( C  e.  dom  B  /\  A  e.  dom  B )  ->  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1615ancoms 451 . . . . . . . 8  |-  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1716com12 29 . . . . . . 7  |-  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
18173ad2ant3 1020 . . . . . 6  |-  ( ( B : dom  B --> On  /\  Ord  dom  B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) )  ->  (
( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `
 C )  e.  ( B `  A
) ) ) )
196, 18sylbi 195 . . . . 5  |-  ( Smo 
B  ->  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
2019expdimp 435 . . . 4  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  dom  B  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
215, 20syld 42 . . 3  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  ( C  e.  A  ->  ( B `  C
)  e.  ( B `
 A ) ) ) )
2221pm2.43d 47 . 2  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  ( B `  C
)  e.  ( B `
 A ) ) )
23223impia 1194 1  |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A )  ->  ( B `  C )  e.  ( B `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2753   dom cdm 4822   Ord word 5408   Oncon0 5409   -->wf 5564   ` cfv 5568   Smo wsmo 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-tr 4489  df-ord 5412  df-iota 5532  df-fv 5576  df-smo 7049
This theorem is referenced by:  smoiun  7064  smoel2  7066
  Copyright terms: Public domain W3C validator