MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoel Structured version   Unicode version

Theorem smoel 7021
Description: If  x is less than  y then a strictly monotone function's value will be strictly less at  x than at  y. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoel  |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A )  ->  ( B `  C )  e.  ( B `  A
) )

Proof of Theorem smoel
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smodm 7012 . . . . 5  |-  ( Smo 
B  ->  Ord  dom  B
)
2 ordtr1 4914 . . . . . . 7  |-  ( Ord 
dom  B  ->  ( ( C  e.  A  /\  A  e.  dom  B )  ->  C  e.  dom  B ) )
32ancomsd 454 . . . . . 6  |-  ( Ord 
dom  B  ->  ( ( A  e.  dom  B  /\  C  e.  A
)  ->  C  e.  dom  B ) )
43expdimp 437 . . . . 5  |-  ( ( Ord  dom  B  /\  A  e.  dom  B )  ->  ( C  e.  A  ->  C  e.  dom  B ) )
51, 4sylan 471 . . . 4  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  C  e.  dom  B
) )
6 df-smo 7007 . . . . . 6  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
7 eleq1 2532 . . . . . . . . . . 11  |-  ( x  =  C  ->  (
x  e.  y  <->  C  e.  y ) )
8 fveq2 5857 . . . . . . . . . . . 12  |-  ( x  =  C  ->  ( B `  x )  =  ( B `  C ) )
98eleq1d 2529 . . . . . . . . . . 11  |-  ( x  =  C  ->  (
( B `  x
)  e.  ( B `
 y )  <->  ( B `  C )  e.  ( B `  y ) ) )
107, 9imbi12d 320 . . . . . . . . . 10  |-  ( x  =  C  ->  (
( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  ( C  e.  y  ->  ( B `  C )  e.  ( B `  y ) ) ) )
11 eleq2 2533 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( C  e.  y  <->  C  e.  A ) )
12 fveq2 5857 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( B `  y )  =  ( B `  A ) )
1312eleq2d 2530 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( B `  C
)  e.  ( B `
 y )  <->  ( B `  C )  e.  ( B `  A ) ) )
1411, 13imbi12d 320 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( C  e.  y  ->  ( B `  C )  e.  ( B `  y ) )  <->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1510, 14rspc2v 3216 . . . . . . . . 9  |-  ( ( C  e.  dom  B  /\  A  e.  dom  B )  ->  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1615ancoms 453 . . . . . . . 8  |-  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1716com12 31 . . . . . . 7  |-  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
18173ad2ant3 1014 . . . . . 6  |-  ( ( B : dom  B --> On  /\  Ord  dom  B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) )  ->  (
( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `
 C )  e.  ( B `  A
) ) ) )
196, 18sylbi 195 . . . . 5  |-  ( Smo 
B  ->  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
2019expdimp 437 . . . 4  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  dom  B  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
215, 20syld 44 . . 3  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  ( C  e.  A  ->  ( B `  C
)  e.  ( B `
 A ) ) ) )
2221pm2.43d 48 . 2  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  ( B `  C
)  e.  ( B `
 A ) ) )
23223impia 1188 1  |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A )  ->  ( B `  C )  e.  ( B `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807   Ord word 4870   Oncon0 4871   dom cdm 4992   -->wf 5575   ` cfv 5579   Smo wsmo 7006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-tr 4534  df-ord 4874  df-iota 5542  df-fv 5587  df-smo 7007
This theorem is referenced by:  smoiun  7022  smoel2  7024
  Copyright terms: Public domain W3C validator