MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smobeth Structured version   Unicode version

Theorem smobeth 9013
Description: The beth function is strictly monotone. This function is not strictly the beth function, but rather bethA is the same as  ( card `  ( R1 `  ( om  +o  A ) ) ), since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 2-Jun-2015.)
Assertion
Ref Expression
smobeth  |-  Smo  ( card  o.  R1 )

Proof of Theorem smobeth
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 8380 . . . . . . 7  |-  card : {
x  |  E. y  e.  On  y  ~~  x }
--> On
2 ffun 5746 . . . . . . 7  |-  ( card
: { x  |  E. y  e.  On  y  ~~  x } --> On  ->  Fun 
card )
31, 2ax-mp 5 . . . . . 6  |-  Fun  card
4 r1fnon 8241 . . . . . . 7  |-  R1  Fn  On
5 fnfun 5689 . . . . . . 7  |-  ( R1  Fn  On  ->  Fun  R1 )
64, 5ax-mp 5 . . . . . 6  |-  Fun  R1
7 funco 5637 . . . . . 6  |-  ( ( Fun  card  /\  Fun  R1 )  ->  Fun  ( card  o.  R1 ) )
83, 6, 7mp2an 677 . . . . 5  |-  Fun  ( card  o.  R1 )
9 funfn 5628 . . . . 5  |-  ( Fun  ( card  o.  R1 ) 
<->  ( card  o.  R1 )  Fn  dom  ( card 
o.  R1 ) )
108, 9mpbi 212 . . . 4  |-  ( card 
o.  R1 )  Fn 
dom  ( card  o.  R1 )
11 rnco 5358 . . . . 5  |-  ran  ( card  o.  R1 )  =  ran  ( card  |`  ran  R1 )
12 resss 5145 . . . . . . 7  |-  ( card  |` 
ran  R1 )  C_  card
13 rnss 5080 . . . . . . 7  |-  ( (
card  |`  ran  R1 ) 
C_  card  ->  ran  ( card  |` 
ran  R1 )  C_  ran  card )
1412, 13ax-mp 5 . . . . . 6  |-  ran  ( card 
|`  ran  R1 )  C_ 
ran  card
15 frn 5750 . . . . . . 7  |-  ( card
: { x  |  E. y  e.  On  y  ~~  x } --> On  ->  ran 
card  C_  On )
161, 15ax-mp 5 . . . . . 6  |-  ran  card  C_  On
1714, 16sstri 3474 . . . . 5  |-  ran  ( card 
|`  ran  R1 )  C_  On
1811, 17eqsstri 3495 . . . 4  |-  ran  ( card  o.  R1 )  C_  On
19 df-f 5603 . . . 4  |-  ( (
card  o.  R1 ) : dom  ( card  o.  R1 )
--> On  <->  ( ( card 
o.  R1 )  Fn 
dom  ( card  o.  R1 )  /\  ran  ( card 
o.  R1 )  C_  On ) )
2010, 18, 19mpbir2an 929 . . 3  |-  ( card 
o.  R1 ) : dom  ( card  o.  R1 )
--> On
21 dmco 5360 . . . 4  |-  dom  ( card  o.  R1 )  =  ( `' R1 " dom  card )
2221feq2i 5737 . . 3  |-  ( (
card  o.  R1 ) : dom  ( card  o.  R1 )
--> On  <->  ( card  o.  R1 ) : ( `' R1 " dom  card ) --> On )
2320, 22mpbi 212 . 2  |-  ( card 
o.  R1 ) : ( `' R1 " dom  card ) --> On
24 elpreima 6015 . . . . . . . . 9  |-  ( R1  Fn  On  ->  (
x  e.  ( `' R1 " dom  card ) 
<->  ( x  e.  On  /\  ( R1 `  x
)  e.  dom  card ) ) )
254, 24ax-mp 5 . . . . . . . 8  |-  ( x  e.  ( `' R1 " dom  card )  <->  ( x  e.  On  /\  ( R1
`  x )  e. 
dom  card ) )
2625simplbi 462 . . . . . . 7  |-  ( x  e.  ( `' R1 " dom  card )  ->  x  e.  On )
27 onelon 5465 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
2826, 27sylan 474 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  y  e.  On )
2925simprbi 466 . . . . . . . 8  |-  ( x  e.  ( `' R1 " dom  card )  ->  ( R1 `  x )  e. 
dom  card )
3029adantr 467 . . . . . . 7  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( R1 `  x )  e.  dom  card )
31 r1ord2 8255 . . . . . . . . 9  |-  ( x  e.  On  ->  (
y  e.  x  -> 
( R1 `  y
)  C_  ( R1 `  x ) ) )
3231imp 431 . . . . . . . 8  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( R1 `  y
)  C_  ( R1 `  x ) )
3326, 32sylan 474 . . . . . . 7  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( R1 `  y )  C_  ( R1 `  x ) )
34 ssnum 8472 . . . . . . 7  |-  ( ( ( R1 `  x
)  e.  dom  card  /\  ( R1 `  y
)  C_  ( R1 `  x ) )  -> 
( R1 `  y
)  e.  dom  card )
3530, 33, 34syl2anc 666 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( R1 `  y )  e.  dom  card )
36 elpreima 6015 . . . . . . 7  |-  ( R1  Fn  On  ->  (
y  e.  ( `' R1 " dom  card ) 
<->  ( y  e.  On  /\  ( R1 `  y
)  e.  dom  card ) ) )
374, 36ax-mp 5 . . . . . 6  |-  ( y  e.  ( `' R1 " dom  card )  <->  ( y  e.  On  /\  ( R1
`  y )  e. 
dom  card ) )
3828, 35, 37sylanbrc 669 . . . . 5  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  y  e.  ( `' R1 " dom  card ) )
3938rgen2 2851 . . . 4  |-  A. x  e.  ( `' R1 " dom  card ) A. y  e.  x  y  e.  ( `' R1 " dom  card )
40 dftr5 4519 . . . 4  |-  ( Tr  ( `' R1 " dom  card )  <->  A. x  e.  ( `' R1 " dom  card ) A. y  e.  x  y  e.  ( `' R1 " dom  card ) )
4139, 40mpbir 213 . . 3  |-  Tr  ( `' R1 " dom  card )
42 cnvimass 5205 . . . . 5  |-  ( `' R1 " dom  card )  C_  dom  R1
43 dffn2 5745 . . . . . . 7  |-  ( R1  Fn  On  <->  R1 : On
--> _V )
444, 43mpbi 212 . . . . . 6  |-  R1 : On
--> _V
4544fdmi 5749 . . . . 5  |-  dom  R1  =  On
4642, 45sseqtri 3497 . . . 4  |-  ( `' R1 " dom  card )  C_  On
47 epweon 6622 . . . 4  |-  _E  We  On
48 wess 4838 . . . 4  |-  ( ( `' R1 " dom  card )  C_  On  ->  (  _E  We  On  ->  _E  We  ( `' R1 " dom  card ) ) )
4946, 47, 48mp2 9 . . 3  |-  _E  We  ( `' R1 " dom  card )
50 df-ord 5443 . . 3  |-  ( Ord  ( `' R1 " dom  card )  <->  ( Tr  ( `' R1 " dom  card )  /\  _E  We  ( `' R1 " dom  card ) ) )
5141, 49, 50mpbir2an 929 . 2  |-  Ord  ( `' R1 " dom  card )
52 r1sdom 8248 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( R1 `  y
)  ~<  ( R1 `  x ) )
5326, 52sylan 474 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( R1 `  y )  ~<  ( R1 `  x ) )
54 cardsdom2 8425 . . . . . . 7  |-  ( ( ( R1 `  y
)  e.  dom  card  /\  ( R1 `  x
)  e.  dom  card )  ->  ( ( card `  ( R1 `  y
) )  e.  (
card `  ( R1 `  x ) )  <->  ( R1 `  y )  ~<  ( R1 `  x ) ) )
5535, 30, 54syl2anc 666 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( ( card `  ( R1 `  y ) )  e.  ( card `  ( R1 `  x ) )  <-> 
( R1 `  y
)  ~<  ( R1 `  x ) ) )
5653, 55mpbird 236 . . . . 5  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( card `  ( R1 `  y
) )  e.  (
card `  ( R1 `  x ) ) )
57 fvco2 5954 . . . . . 6  |-  ( ( R1  Fn  On  /\  y  e.  On )  ->  ( ( card  o.  R1 ) `  y )  =  ( card `  ( R1 `  y ) ) )
584, 28, 57sylancr 668 . . . . 5  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( ( card  o.  R1 ) `  y )  =  (
card `  ( R1 `  y ) ) )
5926adantr 467 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  x  e.  On )
60 fvco2 5954 . . . . . 6  |-  ( ( R1  Fn  On  /\  x  e.  On )  ->  ( ( card  o.  R1 ) `  x )  =  ( card `  ( R1 `  x ) ) )
614, 59, 60sylancr 668 . . . . 5  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( ( card  o.  R1 ) `  x )  =  (
card `  ( R1 `  x ) ) )
6256, 58, 613eltr4d 2526 . . . 4  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( ( card  o.  R1 ) `  y )  e.  ( ( card  o.  R1 ) `  x )
)
6362ex 436 . . 3  |-  ( x  e.  ( `' R1 " dom  card )  ->  (
y  e.  x  -> 
( ( card  o.  R1 ) `  y )  e.  ( ( card  o.  R1 ) `  x )
) )
6463adantl 468 . 2  |-  ( ( y  e.  ( `' R1 " dom  card )  /\  x  e.  ( `' R1 " dom  card ) )  ->  (
y  e.  x  -> 
( ( card  o.  R1 ) `  y )  e.  ( ( card  o.  R1 ) `  x )
) )
6523, 51, 64, 21issmo 7073 1  |-  Smo  ( card  o.  R1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869   {cab 2408   A.wral 2776   E.wrex 2777   _Vcvv 3082    C_ wss 3437   class class class wbr 4421   Tr wtr 4516    _E cep 4760    We wwe 4809   `'ccnv 4850   dom cdm 4851   ran crn 4852    |` cres 4853   "cima 4854    o. ccom 4855   Ord word 5439   Oncon0 5440   Fun wfun 5593    Fn wfn 5594   -->wf 5595   ` cfv 5599   Smo wsmo 7070    ~~ cen 7572    ~< csdm 7574   R1cr1 8236   cardccrd 8372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-om 6705  df-wrecs 7034  df-smo 7071  df-recs 7096  df-rdg 7134  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-r1 8238  df-card 8376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator