MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smo0 Structured version   Visualization version   Unicode version

Theorem smo0 7108
Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
Assertion
Ref Expression
smo0  |-  Smo  (/)

Proof of Theorem smo0
StepHypRef Expression
1 ord0 5498 . . 3  |-  Ord  (/)
21iordsmo 7107 . 2  |-  Smo  (  _I  |`  (/) )
3 res0 5131 . . 3  |-  (  _I  |`  (/) )  =  (/)
4 smoeq 7100 . . 3  |-  ( (  _I  |`  (/) )  =  (/)  ->  ( Smo  (  _I  |`  (/) )  <->  Smo  (/) ) )
53, 4ax-mp 5 . 2  |-  ( Smo  (  _I  |`  (/) )  <->  Smo  (/) )
62, 5mpbi 213 1  |-  Smo  (/)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    = wceq 1455   (/)c0 3743    _I cid 4766    |` cres 4858   Smo wsmo 7095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pr 4656  ax-un 6615
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-br 4419  df-opab 4478  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-ord 5449  df-on 5450  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-fv 5613  df-smo 7096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator