MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwhash Structured version   Unicode version

Theorem slwhash 16437
Description: A sylow subgroup has cardinality equal to the maximum power of  P dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
fislw.1  |-  X  =  ( Base `  G
)
slwhash.3  |-  ( ph  ->  X  e.  Fin )
slwhash.4  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
Assertion
Ref Expression
slwhash  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )

Proof of Theorem slwhash
Dummy variables  g 
k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fislw.1 . . 3  |-  X  =  ( Base `  G
)
2 slwhash.4 . . . . 5  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
3 slwsubg 16423 . . . . 5  |-  ( H  e.  ( P pSyl  G
)  ->  H  e.  (SubGrp `  G ) )
42, 3syl 16 . . . 4  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
5 subgrcl 15998 . . . 4  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
64, 5syl 16 . . 3  |-  ( ph  ->  G  e.  Grp )
7 slwhash.3 . . 3  |-  ( ph  ->  X  e.  Fin )
8 slwprm 16422 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  P  e.  Prime )
92, 8syl 16 . . 3  |-  ( ph  ->  P  e.  Prime )
101grpbn0 15877 . . . . . 6  |-  ( G  e.  Grp  ->  X  =/=  (/) )
116, 10syl 16 . . . . 5  |-  ( ph  ->  X  =/=  (/) )
12 hashnncl 12398 . . . . . 6  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
137, 12syl 16 . . . . 5  |-  ( ph  ->  ( ( # `  X
)  e.  NN  <->  X  =/=  (/) ) )
1411, 13mpbird 232 . . . 4  |-  ( ph  ->  ( # `  X
)  e.  NN )
159, 14pccld 14226 . . 3  |-  ( ph  ->  ( P  pCnt  ( # `
 X ) )  e.  NN0 )
16 pcdvds 14239 . . . 4  |-  ( ( P  e.  Prime  /\  ( # `
 X )  e.  NN )  ->  ( P ^ ( P  pCnt  (
# `  X )
) )  ||  ( # `
 X ) )
179, 14, 16syl2anc 661 . . 3  |-  ( ph  ->  ( P ^ ( P  pCnt  ( # `  X
) ) )  ||  ( # `  X ) )
181, 6, 7, 9, 15, 17sylow1 16416 . 2  |-  ( ph  ->  E. k  e.  (SubGrp `  G ) ( # `  k )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )
197adantr 465 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  X  e.  Fin )
204adantr 465 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  H  e.  (SubGrp `  G ) )
21 simprl 755 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  k  e.  (SubGrp `  G ) )
22 eqid 2467 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
23 eqid 2467 . . . . . . 7  |-  ( Gs  H )  =  ( Gs  H )
2423slwpgp 16426 . . . . . 6  |-  ( H  e.  ( P pSyl  G
)  ->  P pGrp  ( Gs  H ) )
252, 24syl 16 . . . . 5  |-  ( ph  ->  P pGrp  ( Gs  H ) )
2625adantr 465 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  P pGrp  ( Gs  H
) )
27 simprr 756 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
28 eqid 2467 . . . 4  |-  ( -g `  G )  =  (
-g `  G )
291, 19, 20, 21, 22, 26, 27, 28sylow2b 16436 . . 3  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  E. g  e.  X  H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
30 simprr 756 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
312ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  e.  ( P pSyl  G )
)
3231, 8syl 16 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  P  e.  Prime )
3315ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( P  pCnt  ( # `  X
) )  e.  NN0 )
3421adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  e.  (SubGrp `  G ) )
35 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  g  e.  X )
36 eqid 2467 . . . . . . . . . . . . 13  |-  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  =  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )
371, 22, 28, 36conjsubg 16090 . . . . . . . . . . . 12  |-  ( ( k  e.  (SubGrp `  G )  /\  g  e.  X )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G ) )
3834, 35, 37syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e.  (SubGrp `  G )
)
39 eqid 2467 . . . . . . . . . . . 12  |-  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  ( Gs 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
4039subgbas 15997 . . . . . . . . . . 11  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  =  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) )
4138, 40syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  =  ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )
4241fveq2d 5868 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  (
# `  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) ) )
431, 22, 28, 36conjsubgen 16091 . . . . . . . . . . . 12  |-  ( ( k  e.  (SubGrp `  G )  /\  g  e.  X )  ->  k  ~~  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
4434, 35, 43syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  ~~  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
457ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  X  e.  Fin )
461subgss 15994 . . . . . . . . . . . . . 14  |-  ( k  e.  (SubGrp `  G
)  ->  k  C_  X )
4734, 46syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  C_  X )
48 ssfi 7737 . . . . . . . . . . . . 13  |-  ( ( X  e.  Fin  /\  k  C_  X )  -> 
k  e.  Fin )
4945, 47, 48syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  e.  Fin )
501subgss 15994 . . . . . . . . . . . . . 14  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  C_  X )
5138, 50syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  C_  X )
52 ssfi 7737 . . . . . . . . . . . . 13  |-  ( ( X  e.  Fin  /\  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  C_  X )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e. 
Fin )
5345, 51, 52syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e. 
Fin )
54 hashen 12382 . . . . . . . . . . . 12  |-  ( ( k  e.  Fin  /\  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  Fin )  ->  ( ( # `  k
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  <-> 
k  ~~  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
5549, 53, 54syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( ( # `
 k )  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  <->  k  ~~  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
5644, 55mpbird 232 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  k
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
57 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
5856, 57eqtr3d 2510 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )
5942, 58eqtr3d 2510 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
60 oveq2 6290 . . . . . . . . . 10  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
6160eqeq2d 2481 . . . . . . . . 9  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( ( # `
 ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )  =  ( P ^
n )  <->  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )
6261rspcev 3214 . . . . . . . 8  |-  ( ( ( P  pCnt  ( # `
 X ) )  e.  NN0  /\  ( # `
 ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )  =  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) )
6333, 59, 62syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) )
6439subggrp 15996 . . . . . . . . 9  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  e.  Grp )
6538, 64syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  e.  Grp )
6641, 53eqeltrrd 2556 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  e.  Fin )
67 eqid 2467 . . . . . . . . 9  |-  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  =  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
6867pgpfi 16418 . . . . . . . 8  |-  ( ( ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  e.  Grp  /\  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) )  e.  Fin )  ->  ( P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) ) ) )
6965, 66, 68syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( P pGrp  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  <-> 
( P  e.  Prime  /\ 
E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) )  =  ( P ^ n ) ) ) )
7032, 63, 69mpbir2and 920 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7139slwispgp 16424 . . . . . . 7  |-  ( ( H  e.  ( P pSyl 
G )  /\  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G ) )  -> 
( ( H  C_  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  /\  P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )  <->  H  =  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7231, 38, 71syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( ( H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  /\  P pGrp  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  <->  H  =  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7330, 70, 72mpbi2and 919 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  =  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
7473fveq2d 5868 . . . 4  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  H
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
7574, 58eqtrd 2508 . . 3  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
7629, 75rexlimddv 2959 . 2  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
7718, 76rexlimddv 2959 1  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815    C_ wss 3476   (/)c0 3785   class class class wbr 4447    |-> cmpt 4505   ran crn 5000   ` cfv 5586  (class class class)co 6282    ~~ cen 7510   Fincfn 7513   NNcn 10532   NN0cn0 10791   ^cexp 12129   #chash 12367    || cdivides 13840   Primecprime 14069    pCnt cpc 14212   Basecbs 14483   ↾s cress 14484   +g cplusg 14548   Grpcgrp 15720   -gcsg 15723  SubGrpcsubg 15987   pGrp cpgp 16344   pSyl cslw 16345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-er 7308  df-ec 7310  df-qs 7314  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11960  df-seq 12071  df-exp 12130  df-fac 12316  df-bc 12343  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-clim 13267  df-sum 13465  df-dvds 13841  df-gcd 13997  df-prm 14070  df-pc 14213  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-0g 14690  df-mnd 15725  df-submnd 15775  df-grp 15855  df-minusg 15856  df-sbg 15857  df-mulg 15858  df-subg 15990  df-eqg 15992  df-ghm 16057  df-ga 16120  df-od 16346  df-pgp 16348  df-slw 16349
This theorem is referenced by:  fislw  16438  sylow2  16439  sylow3lem4  16443
  Copyright terms: Public domain W3C validator