Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltval2 Structured version   Unicode version

Theorem sltval2 30089
Description: Alternate expression for surreal less than. Two surreals obey surreal less than iff they obey the sign ordering at the first place they differ. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
sltval2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
Distinct variable groups:    A, a    B, a

Proof of Theorem sltval2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sltval 30080 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
2 fvex 5815 . . . . . . . . . . . . 13  |-  ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
3 fvex 5815 . . . . . . . . . . . . 13  |-  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
42, 3brtp 29848 . . . . . . . . . . . 12  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  <->  ( ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) ) )
5 1n0 7102 . . . . . . . . . . . . . . . . 17  |-  1o  =/=  (/)
65neii 2602 . . . . . . . . . . . . . . . 16  |-  -.  1o  =  (/)
7 eqeq1 2406 . . . . . . . . . . . . . . . 16  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  ->  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  <->  1o  =  (/) ) )
86, 7mtbiri 301 . . . . . . . . . . . . . . 15  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  ->  -.  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
9 fvprc 5799 . . . . . . . . . . . . . . 15  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
108, 9nsyl2 127 . . . . . . . . . . . . . 14  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
1110adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
1210adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
13 2on0 7096 . . . . . . . . . . . . . . . . 17  |-  2o  =/=  (/)
1413neii 2602 . . . . . . . . . . . . . . . 16  |-  -.  2o  =  (/)
15 eqeq1 2406 . . . . . . . . . . . . . . . 16  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  ->  (
( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  <->  2o  =  (/) ) )
1614, 15mtbiri 301 . . . . . . . . . . . . . . 15  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  ->  -.  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
17 fvprc 5799 . . . . . . . . . . . . . . 15  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
1816, 17nsyl2 127 . . . . . . . . . . . . . 14  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
1918adantl 464 . . . . . . . . . . . . 13  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
2011, 12, 193jaoi 1293 . . . . . . . . . . . 12  |-  ( ( ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
214, 20sylbi 195 . . . . . . . . . . 11  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
22 onintrab 6574 . . . . . . . . . . 11  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  _V  <->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
2321, 22sylib 196 . . . . . . . . . 10  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
2423adantl 464 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
25 onelon 4846 . . . . . . . . . . . . . . 15  |-  ( (
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  -> 
y  e.  On )
2625expcom 433 . . . . . . . . . . . . . 14  |-  ( y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  ->  y  e.  On ) )
2724, 26syl5 30 . . . . . . . . . . . . 13  |-  ( y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  (
( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) )  ->  y  e.  On ) )
28 fveq2 5805 . . . . . . . . . . . . . . . 16  |-  ( a  =  y  ->  ( A `  a )  =  ( A `  y ) )
29 fveq2 5805 . . . . . . . . . . . . . . . 16  |-  ( a  =  y  ->  ( B `  a )  =  ( B `  y ) )
3028, 29neeq12d 2682 . . . . . . . . . . . . . . 15  |-  ( a  =  y  ->  (
( A `  a
)  =/=  ( B `
 a )  <->  ( A `  y )  =/=  ( B `  y )
) )
3130onnminsb 6577 . . . . . . . . . . . . . 14  |-  ( y  e.  On  ->  (
y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  -.  ( A `  y
)  =/=  ( B `
 y ) ) )
3231com12 29 . . . . . . . . . . . . 13  |-  ( y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  (
y  e.  On  ->  -.  ( A `  y
)  =/=  ( B `
 y ) ) )
3327, 32syld 42 . . . . . . . . . . . 12  |-  ( y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  (
( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) )  ->  -.  ( A `  y )  =/=  ( B `  y ) ) )
3433com12 29 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  -> 
( y  e.  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  ->  -.  ( A `  y )  =/=  ( B `  y )
) )
35 df-ne 2600 . . . . . . . . . . . 12  |-  ( ( A `  y )  =/=  ( B `  y )  <->  -.  ( A `  y )  =  ( B `  y ) )
3635con2bii 330 . . . . . . . . . . 11  |-  ( ( A `  y )  =  ( B `  y )  <->  -.  ( A `  y )  =/=  ( B `  y
) )
3734, 36syl6ibr 227 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  -> 
( y  e.  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  ->  ( A `  y )  =  ( B `  y ) ) )
3837ralrimiv 2815 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  ->  A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y ) )
3924, 38jca 530 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  -> 
( |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  On  /\ 
A. y  e.  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  ( A `  y
)  =  ( B `
 y ) ) )
4039ex 432 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y ) ) ) )
4140impac 619 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  -> 
( ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  A. y  e. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y ) )  /\  ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
42 anass 647 . . . . . 6  |-  ( ( ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  A. y  e. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y ) )  /\  ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  <->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  ( A. y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ( A `
 y )  =  ( B `  y
)  /\  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) ) )
4341, 42sylib 196 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  -> 
( |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  On  /\  ( A. y  e. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) ) )
44 raleq 3003 . . . . . . 7  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  <->  A. y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ( A `
 y )  =  ( B `  y
) ) )
45 fveq2 5805 . . . . . . . 8  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A `  x )  =  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
46 fveq2 5805 . . . . . . . 8  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( B `  x )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
4745, 46breq12d 4407 . . . . . . 7  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  <->  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
4844, 47anbi12d 709 . . . . . 6  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) )  <->  ( A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) ) )
4948rspcev 3159 . . . . 5  |-  ( (
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  ( A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( B `  y )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
5043, 49syl 17 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
5150ex 432 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) ) )
52 eqeq12 2421 . . . . . . . . . . . . . 14  |-  ( ( ( A `  x
)  =  1o  /\  ( B `  x )  =  (/) )  ->  (
( A `  x
)  =  ( B `
 x )  <->  1o  =  (/) ) )
536, 52mtbiri 301 . . . . . . . . . . . . 13  |-  ( ( ( A `  x
)  =  1o  /\  ( B `  x )  =  (/) )  ->  -.  ( A `  x )  =  ( B `  x ) )
54 1on 7094 . . . . . . . . . . . . . . . . 17  |-  1o  e.  On
55 0elon 4874 . . . . . . . . . . . . . . . . 17  |-  (/)  e.  On
56 suc11 4924 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( suc  1o  =  suc  (/)  <->  1o  =  (/) ) )
5756necon3bid 2661 . . . . . . . . . . . . . . . . 17  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( suc  1o  =/=  suc  (/) 
<->  1o  =/=  (/) ) )
5854, 55, 57mp2an 670 . . . . . . . . . . . . . . . 16  |-  ( suc 
1o  =/=  suc  (/)  <->  1o  =/=  (/) )
595, 58mpbir 209 . . . . . . . . . . . . . . 15  |-  suc  1o  =/=  suc  (/)
60 df-2o 7088 . . . . . . . . . . . . . . . 16  |-  2o  =  suc  1o
61 df-1o 7087 . . . . . . . . . . . . . . . 16  |-  1o  =  suc  (/)
6260, 61eqeq12i 2422 . . . . . . . . . . . . . . 15  |-  ( 2o  =  1o  <->  suc  1o  =  suc  (/) )
6359, 62nemtbir 2731 . . . . . . . . . . . . . 14  |-  -.  2o  =  1o
64 eqeq12 2421 . . . . . . . . . . . . . . 15  |-  ( ( ( A `  x
)  =  1o  /\  ( B `  x )  =  2o )  -> 
( ( A `  x )  =  ( B `  x )  <-> 
1o  =  2o ) )
65 eqcom 2411 . . . . . . . . . . . . . . 15  |-  ( 1o  =  2o  <->  2o  =  1o )
6664, 65syl6bb 261 . . . . . . . . . . . . . 14  |-  ( ( ( A `  x
)  =  1o  /\  ( B `  x )  =  2o )  -> 
( ( A `  x )  =  ( B `  x )  <-> 
2o  =  1o ) )
6763, 66mtbiri 301 . . . . . . . . . . . . 13  |-  ( ( ( A `  x
)  =  1o  /\  ( B `  x )  =  2o )  ->  -.  ( A `  x
)  =  ( B `
 x ) )
6813nesymi 2676 . . . . . . . . . . . . . 14  |-  -.  (/)  =  2o
69 eqeq12 2421 . . . . . . . . . . . . . 14  |-  ( ( ( A `  x
)  =  (/)  /\  ( B `  x )  =  2o )  ->  (
( A `  x
)  =  ( B `
 x )  <->  (/)  =  2o ) )
7068, 69mtbiri 301 . . . . . . . . . . . . 13  |-  ( ( ( A `  x
)  =  (/)  /\  ( B `  x )  =  2o )  ->  -.  ( A `  x )  =  ( B `  x ) )
7153, 67, 703jaoi 1293 . . . . . . . . . . . 12  |-  ( ( ( ( A `  x )  =  1o 
/\  ( B `  x )  =  (/) )  \/  ( ( A `  x )  =  1o  /\  ( B `  x )  =  2o )  \/  (
( A `  x
)  =  (/)  /\  ( B `  x )  =  2o ) )  ->  -.  ( A `  x
)  =  ( B `
 x ) )
72 fvex 5815 . . . . . . . . . . . . 13  |-  ( A `
 x )  e. 
_V
73 fvex 5815 . . . . . . . . . . . . 13  |-  ( B `
 x )  e. 
_V
7472, 73brtp 29848 . . . . . . . . . . . 12  |-  ( ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
)  <->  ( ( ( A `  x )  =  1o  /\  ( B `  x )  =  (/) )  \/  (
( A `  x
)  =  1o  /\  ( B `  x )  =  2o )  \/  ( ( A `  x )  =  (/)  /\  ( B `  x
)  =  2o ) ) )
75 df-ne 2600 . . . . . . . . . . . 12  |-  ( ( A `  x )  =/=  ( B `  x )  <->  -.  ( A `  x )  =  ( B `  x ) )
7671, 74, 753imtr4i 266 . . . . . . . . . . 11  |-  ( ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
)  ->  ( A `  x )  =/=  ( B `  x )
)
77 fveq2 5805 . . . . . . . . . . . . . . . 16  |-  ( a  =  x  ->  ( A `  a )  =  ( A `  x ) )
78 fveq2 5805 . . . . . . . . . . . . . . . 16  |-  ( a  =  x  ->  ( B `  a )  =  ( B `  x ) )
7977, 78neeq12d 2682 . . . . . . . . . . . . . . 15  |-  ( a  =  x  ->  (
( A `  a
)  =/=  ( B `
 a )  <->  ( A `  x )  =/=  ( B `  x )
) )
8079elrab 3206 . . . . . . . . . . . . . 14  |-  ( x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  <->  ( x  e.  On  /\  ( A `
 x )  =/=  ( B `  x
) ) )
8180biimpri 206 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  ( A `  x )  =/=  ( B `  x ) )  ->  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
8281adantlr 713 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x )  =/=  ( B `  x ) )  ->  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
83 ssrab2 3523 . . . . . . . . . . . . . . . . . 18  |-  { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  On
84 ne0i 3743 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  =/=  (/) )
8584adantl 464 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  =/=  (/) )
86 onint 6568 . . . . . . . . . . . . . . . . . 18  |-  ( ( { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  On  /\  {
a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  =/=  (/) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )
8783, 85, 86sylancr 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
88 nfrab1 2987 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ a { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }
8988nfint 4236 . . . . . . . . . . . . . . . . . . 19  |-  F/_ a |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }
90 nfcv 2564 . . . . . . . . . . . . . . . . . . 19  |-  F/_ a On
91 nfcv 2564 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ a A
9291, 89nffv 5812 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ a
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )
93 nfcv 2564 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ a B
9493, 89nffv 5812 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ a
( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )
9592, 94nfne 2734 . . . . . . . . . . . . . . . . . . 19  |-  F/ a ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =/=  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
96 fveq2 5805 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A `  a )  =  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
97 fveq2 5805 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( B `  a )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
9896, 97neeq12d 2682 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A `  a
)  =/=  ( B `
 a )  <->  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =/=  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )
9989, 90, 95, 98elrabf 3204 . . . . . . . . . . . . . . . . . 18  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  <->  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  On  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =/=  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
10099simprbi 462 . . . . . . . . . . . . . . . . 17  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =/=  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
10187, 100syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  -> 
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =/=  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) )
102 df-ne 2600 . . . . . . . . . . . . . . . 16  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =/=  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  <->  -.  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
103101, 102sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  -.  ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) )
104 fveq2 5805 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A `  y )  =  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
105 fveq2 5805 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( B `  y )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
106104, 105eqeq12d 2424 . . . . . . . . . . . . . . . . 17  |-  ( y  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A `  y
)  =  ( B `
 y )  <->  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )
107106rspccv 3156 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  x  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
108107ad2antlr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  -> 
( |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  x  ->  ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) ) )
109103, 108mtod 177 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  -.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  x
)
110 simpll 752 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  x  e.  On )
111 oninton 6573 . . . . . . . . . . . . . . . . 17  |-  ( ( { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  On  /\  {
a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  =/=  (/) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
11283, 84, 111sylancr 661 . . . . . . . . . . . . . . . 16  |-  ( x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
113112adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
114 ontri1 4855 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )  ->  ( x  C_  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  <->  -.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  x ) )
115110, 113, 114syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  -> 
( x  C_  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  <->  -.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  x ) )
116109, 115mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  x  C_  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
117 intss1 4241 . . . . . . . . . . . . . 14  |-  ( x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  x )
118117adantl 464 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  x )
119116, 118eqssd 3458 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  x  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )
12082, 119syldan 468 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x )  =/=  ( B `  x ) )  ->  x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )
12176, 120sylan2 472 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  x  =  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
122121fveq2d 5809 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  ( A `  x )  =  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
123121fveq2d 5809 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  ( B `  x )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
124122, 123breq12d 4407 . . . . . . . 8  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  (
( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  <->  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
125124biimpd 207 . . . . . . 7  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  ( A `  y )  =  ( B `  y ) )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  (
( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )
126125ex 432 . . . . . 6  |-  ( ( x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) )  -> 
( ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  ->  (
( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) ) )
127126pm2.43d 47 . . . . 5  |-  ( ( x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) )  -> 
( ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )
128127expimpd 601 . . . 4  |-  ( x  e.  On  ->  (
( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) )  -> 
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
129128rexlimiv 2889 . . 3  |-  ( E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) )
13051, 129impbid1 203 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) ) )
1311, 130bitr4d 256 1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    \/ w3o 973    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2753   E.wrex 2754   {crab 2757   _Vcvv 3058    C_ wss 3413   (/)c0 3737   {ctp 3975   <.cop 3977   |^|cint 4226   class class class wbr 4394   Oncon0 4821   suc csuc 4823   ` cfv 5525   1oc1o 7080   2oc2o 7081   Nocsur 30073   <scslt 30074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-br 4395  df-opab 4453  df-tr 4489  df-eprel 4733  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-suc 4827  df-iota 5489  df-fv 5533  df-1o 7087  df-2o 7088  df-slt 30077
This theorem is referenced by:  sltsgn1  30094  sltsgn2  30095  sltintdifex  30096  sltres  30097  nodenselem8  30121
  Copyright terms: Public domain W3C validator