Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltval Structured version   Unicode version

Theorem sltval 27635
Description: The value of the surreal less than relationship. (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
sltval  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem sltval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2493 . . . . 5  |-  ( f  =  A  ->  (
f  e.  No  <->  A  e.  No ) )
21anbi1d 697 . . . 4  |-  ( f  =  A  ->  (
( f  e.  No  /\  g  e.  No )  <-> 
( A  e.  No  /\  g  e.  No ) ) )
3 fveq1 5678 . . . . . . . 8  |-  ( f  =  A  ->  (
f `  y )  =  ( A `  y ) )
43eqeq1d 2441 . . . . . . 7  |-  ( f  =  A  ->  (
( f `  y
)  =  ( g `
 y )  <->  ( A `  y )  =  ( g `  y ) ) )
54ralbidv 2725 . . . . . 6  |-  ( f  =  A  ->  ( A. y  e.  x  ( f `  y
)  =  ( g `
 y )  <->  A. y  e.  x  ( A `  y )  =  ( g `  y ) ) )
6 fveq1 5678 . . . . . . 7  |-  ( f  =  A  ->  (
f `  x )  =  ( A `  x ) )
76breq1d 4290 . . . . . 6  |-  ( f  =  A  ->  (
( f `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x )  <->  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) ) )
85, 7anbi12d 703 . . . . 5  |-  ( f  =  A  ->  (
( A. y  e.  x  ( f `  y )  =  ( g `  y )  /\  ( f `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) )  <->  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x
) ) ) )
98rexbidv 2726 . . . 4  |-  ( f  =  A  ->  ( E. x  e.  On  ( A. y  e.  x  ( f `  y
)  =  ( g `
 y )  /\  ( f `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) )  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) ) ) )
102, 9anbi12d 703 . . 3  |-  ( f  =  A  ->  (
( ( f  e.  No  /\  g  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( f `  y
)  =  ( g `
 y )  /\  ( f `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) ) )  <-> 
( ( A  e.  No  /\  g  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x
) ) ) ) )
11 eleq1 2493 . . . . 5  |-  ( g  =  B  ->  (
g  e.  No  <->  B  e.  No ) )
1211anbi2d 696 . . . 4  |-  ( g  =  B  ->  (
( A  e.  No  /\  g  e.  No )  <-> 
( A  e.  No  /\  B  e.  No ) ) )
13 fveq1 5678 . . . . . . . 8  |-  ( g  =  B  ->  (
g `  y )  =  ( B `  y ) )
1413eqeq2d 2444 . . . . . . 7  |-  ( g  =  B  ->  (
( A `  y
)  =  ( g `
 y )  <->  ( A `  y )  =  ( B `  y ) ) )
1514ralbidv 2725 . . . . . 6  |-  ( g  =  B  ->  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  <->  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )
16 fveq1 5678 . . . . . . 7  |-  ( g  =  B  ->  (
g `  x )  =  ( B `  x ) )
1716breq2d 4292 . . . . . 6  |-  ( g  =  B  ->  (
( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x )  <->  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
1815, 17anbi12d 703 . . . . 5  |-  ( g  =  B  ->  (
( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) )  <->  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
1918rexbidv 2726 . . . 4  |-  ( g  =  B  ->  ( E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x
) )  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) ) )
2012, 19anbi12d 703 . . 3  |-  ( g  =  B  ->  (
( ( A  e.  No  /\  g  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( g `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x
) ) )  <->  ( ( A  e.  No  /\  B  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) ) )
21 df-slt 27632 . . 3  |-  <s 
=  { <. f ,  g >.  |  ( ( f  e.  No  /\  g  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( f `  y )  =  ( g `  y )  /\  ( f `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) ) ) }
2210, 20, 21brabg 4597 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( ( A  e.  No  /\  B  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) ) )
2322bianabs 868 1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   E.wrex 2706   (/)c0 3625   {ctp 3869   <.cop 3871   class class class wbr 4280   Oncon0 4706   ` cfv 5406   1oc1o 6901   2oc2o 6902   Nocsur 27628   <scslt 27629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pr 4519
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-br 4281  df-opab 4339  df-iota 5369  df-fv 5414  df-slt 27632
This theorem is referenced by:  sltval2  27644  sltres  27652  nodense  27677  nobndup  27688  nobnddown  27689
  Copyright terms: Public domain W3C validator