Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltsolem1 Structured version   Unicode version

Theorem sltsolem1 29005
Description: Lemma for sltso 29006. The sign expansion relationship totally orders the surreal signs. (Contributed by Scott Fenton, 8-Jun-2011.)
Assertion
Ref Expression
sltsolem1  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } )

Proof of Theorem sltsolem1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 7142 . . . . . . . 8  |-  1o  =/=  (/)
2 df-ne 2664 . . . . . . . 8  |-  ( 1o  =/=  (/)  <->  -.  1o  =  (/) )
31, 2mpbi 208 . . . . . . 7  |-  -.  1o  =  (/)
4 eqtr2 2494 . . . . . . 7  |-  ( ( x  =  1o  /\  x  =  (/) )  ->  1o  =  (/) )
53, 4mto 176 . . . . . 6  |-  -.  (
x  =  1o  /\  x  =  (/) )
6 1on 7134 . . . . . . . . 9  |-  1o  e.  On
7 0elon 4931 . . . . . . . . 9  |-  (/)  e.  On
8 df-2o 7128 . . . . . . . . . . 11  |-  2o  =  suc  1o
9 df-1o 7127 . . . . . . . . . . 11  |-  1o  =  suc  (/)
108, 9eqeq12i 2487 . . . . . . . . . 10  |-  ( 2o  =  1o  <->  suc  1o  =  suc  (/) )
11 suc11 4981 . . . . . . . . . 10  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( suc  1o  =  suc  (/)  <->  1o  =  (/) ) )
1210, 11syl5bb 257 . . . . . . . . 9  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( 2o  =  1o  <->  1o  =  (/) ) )
136, 7, 12mp2an 672 . . . . . . . 8  |-  ( 2o  =  1o  <->  1o  =  (/) )
141, 13nemtbir 2795 . . . . . . 7  |-  -.  2o  =  1o
15 eqtr2 2494 . . . . . . . 8  |-  ( ( x  =  2o  /\  x  =  1o )  ->  2o  =  1o )
1615ancoms 453 . . . . . . 7  |-  ( ( x  =  1o  /\  x  =  2o )  ->  2o  =  1o )
1714, 16mto 176 . . . . . 6  |-  -.  (
x  =  1o  /\  x  =  2o )
18 nsuceq0 4958 . . . . . . . 8  |-  suc  1o  =/=  (/)
198eqeq1i 2474 . . . . . . . 8  |-  ( 2o  =  (/)  <->  suc  1o  =  (/) )
2018, 19nemtbir 2795 . . . . . . 7  |-  -.  2o  =  (/)
21 eqtr2 2494 . . . . . . . 8  |-  ( ( x  =  2o  /\  x  =  (/) )  ->  2o  =  (/) )
2221ancoms 453 . . . . . . 7  |-  ( ( x  =  (/)  /\  x  =  2o )  ->  2o  =  (/) )
2320, 22mto 176 . . . . . 6  |-  -.  (
x  =  (/)  /\  x  =  2o )
245, 17, 233pm3.2ni 28565 . . . . 5  |-  -.  (
( x  =  1o 
/\  x  =  (/) )  \/  ( x  =  1o  /\  x  =  2o )  \/  (
x  =  (/)  /\  x  =  2o ) )
25 vex 3116 . . . . . 6  |-  x  e. 
_V
2625, 25brtp 28755 . . . . 5  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x  <->  ( ( x  =  1o  /\  x  =  (/) )  \/  (
x  =  1o  /\  x  =  2o )  \/  ( x  =  (/)  /\  x  =  2o ) ) )
2724, 26mtbir 299 . . . 4  |-  -.  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x
2827a1i 11 . . 3  |-  ( x  e.  { 1o ,  2o ,  (/) }  ->  -.  x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x )
29 vex 3116 . . . . . . 7  |-  y  e. 
_V
3025, 29brtp 28755 . . . . . 6  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  <->  ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
31 vex 3116 . . . . . . 7  |-  z  e. 
_V
3229, 31brtp 28755 . . . . . 6  |-  ( y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z  <->  ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) ) )
33 eqtr2 2494 . . . . . . . . . . . . 13  |-  ( ( y  =  1o  /\  y  =  (/) )  ->  1o  =  (/) )
343, 33mto 176 . . . . . . . . . . . 12  |-  -.  (
y  =  1o  /\  y  =  (/) )
3534pm2.21i 131 . . . . . . . . . . 11  |-  ( ( y  =  1o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
3635ad2ant2rl 748 . . . . . . . . . 10  |-  ( ( ( y  =  1o 
/\  z  =  (/) )  /\  ( x  =  1o  /\  y  =  (/) ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
3736expcom 435 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  1o  /\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
3835ad2ant2rl 748 . . . . . . . . . 10  |-  ( ( ( y  =  1o 
/\  z  =  2o )  /\  ( x  =  1o  /\  y  =  (/) ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
3938expcom 435 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  1o  /\  z  =  2o )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) ) )
40 3mix2 1166 . . . . . . . . . . 11  |-  ( ( x  =  1o  /\  z  =  2o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4140ad2ant2rl 748 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  (/) )  /\  ( y  =  (/)  /\  z  =  2o ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
4241ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  (/)  /\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
4337, 39, 423jaod 1292 . . . . . . . 8  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
44 eqtr2 2494 . . . . . . . . . . . . 13  |-  ( ( y  =  2o  /\  y  =  1o )  ->  2o  =  1o )
4514, 44mto 176 . . . . . . . . . . . 12  |-  -.  (
y  =  2o  /\  y  =  1o )
4645pm2.21i 131 . . . . . . . . . . 11  |-  ( ( y  =  2o  /\  y  =  1o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4746ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  1o  /\  z  =  (/) ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4847ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  1o  /\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
4946ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  1o  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5049ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  1o  /\  z  =  2o )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) ) )
51 eqtr2 2494 . . . . . . . . . . . . 13  |-  ( ( y  =  2o  /\  y  =  (/) )  ->  2o  =  (/) )
5220, 51mto 176 . . . . . . . . . . . 12  |-  -.  (
y  =  2o  /\  y  =  (/) )
5352pm2.21i 131 . . . . . . . . . . 11  |-  ( ( y  =  2o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5453ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  (/)  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5554ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  (/)  /\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5648, 50, 553jaod 1292 . . . . . . . 8  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5746ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  1o  /\  z  =  (/) ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
5857ex 434 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  1o 
/\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5946ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  1o  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6059ex 434 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  1o 
/\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6153ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  (/)  /\  z  =  2o ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
6261ex 434 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  (/)  /\  z  =  2o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6358, 60, 623jaod 1292 . . . . . . . 8  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6443, 56, 633jaoi 1291 . . . . . . 7  |-  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  -> 
( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6564imp 429 . . . . . 6  |-  ( ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  /\  ( ( y  =  1o  /\  z  =  (/) )  \/  ( y  =  1o 
/\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) ) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6630, 32, 65syl2anb 479 . . . . 5  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
6725, 31brtp 28755 . . . . 5  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z  <->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6866, 67sylibr 212 . . . 4  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )  ->  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )
6968a1i 11 . . 3  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) }  /\  z  e.  { 1o ,  2o ,  (/) } )  ->  ( ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } z )  ->  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } z ) )
7025eltp 4072 . . . . 5  |-  ( x  e.  { 1o ,  2o ,  (/) }  <->  ( x  =  1o  \/  x  =  2o  \/  x  =  (/) ) )
7129eltp 4072 . . . . 5  |-  ( y  e.  { 1o ,  2o ,  (/) }  <->  ( y  =  1o  \/  y  =  2o  \/  y  =  (/) ) )
72 eqtr3 2495 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  1o )  ->  x  =  y )
73723mix2d 1172 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  1o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
7473ex 434 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  1o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
75 3mix2 1166 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
76753mix1d 1171 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
7776ex 434 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  2o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
78 3mix1 1165 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
79783mix1d 1171 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8079ex 434 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  (/)  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
8174, 77, 803jaod 1292 . . . . . . 7  |-  ( x  =  1o  ->  (
( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
82 3mix2 1166 . . . . . . . . . 10  |-  ( ( y  =  1o  /\  x  =  2o )  ->  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
83823mix3d 1173 . . . . . . . . 9  |-  ( ( y  =  1o  /\  x  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8483expcom 435 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  1o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
85 eqtr3 2495 . . . . . . . . . 10  |-  ( ( x  =  2o  /\  y  =  2o )  ->  x  =  y )
86853mix2d 1172 . . . . . . . . 9  |-  ( ( x  =  2o  /\  y  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8786ex 434 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  2o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
88 3mix3 1167 . . . . . . . . . 10  |-  ( ( y  =  (/)  /\  x  =  2o )  ->  (
( y  =  1o 
/\  x  =  (/) )  \/  ( y  =  1o  /\  x  =  2o )  \/  (
y  =  (/)  /\  x  =  2o ) ) )
89883mix3d 1173 . . . . . . . . 9  |-  ( ( y  =  (/)  /\  x  =  2o )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9089expcom 435 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  (/)  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
9184, 87, 903jaod 1292 . . . . . . 7  |-  ( x  =  2o  ->  (
( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
92 3mix1 1165 . . . . . . . . . 10  |-  ( ( y  =  1o  /\  x  =  (/) )  -> 
( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
93923mix3d 1173 . . . . . . . . 9  |-  ( ( y  =  1o  /\  x  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9493expcom 435 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  1o  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
95 3mix3 1167 . . . . . . . . . 10  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) ) )
96953mix1d 1171 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9796ex 434 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  2o  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
98 eqtr3 2495 . . . . . . . . . 10  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  x  =  y )
99983mix2d 1172 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
10099ex 434 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  (/)  ->  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
10194, 97, 1003jaod 1292 . . . . . . 7  |-  ( x  =  (/)  ->  ( ( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
10281, 91, 1013jaoi 1291 . . . . . 6  |-  ( ( x  =  1o  \/  x  =  2o  \/  x  =  (/) )  -> 
( ( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
103102imp 429 . . . . 5  |-  ( ( ( x  =  1o  \/  x  =  2o  \/  x  =  (/) )  /\  ( y  =  1o  \/  y  =  2o  \/  y  =  (/) ) )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
10470, 71, 103syl2anb 479 . . . 4  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) } )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
105 biid 236 . . . . 5  |-  ( x  =  y  <->  x  =  y )
10629, 25brtp 28755 . . . . 5  |-  ( y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x  <->  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
10730, 105, 1063orbi123i 1186 . . . 4  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  \/  x  =  y  \/  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x )  <->  ( (
( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
108104, 107sylibr 212 . . 3  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) } )  ->  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } y  \/  x  =  y  \/  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x ) )
10928, 69, 108issoi 4831 . 2  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  { 1o ,  2o ,  (/) }
110 df-tp 4032 . . 3  |-  { 1o ,  2o ,  (/) }  =  ( { 1o ,  2o }  u.  { (/) } )
111 soeq2 4820 . . 3  |-  ( { 1o ,  2o ,  (/)
}  =  ( { 1o ,  2o }  u.  { (/) } )  -> 
( { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  { 1o ,  2o ,  (/) }  <->  { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } ) ) )
112110, 111ax-mp 5 . 2  |-  ( {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  Or  { 1o ,  2o ,  (/)
}  <->  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/)
} ) )
113109, 112mpbi 208 1  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 972    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662    u. cun 3474   (/)c0 3785   {csn 4027   {cpr 4029   {ctp 4031   <.cop 4033   class class class wbr 4447    Or wor 4799   Oncon0 4878   suc csuc 4880   1oc1o 7120   2oc2o 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-tr 4541  df-eprel 4791  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-suc 4884  df-1o 7127  df-2o 7128
This theorem is referenced by:  sltso  29006
  Copyright terms: Public domain W3C validator