Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltsolem1 Structured version   Unicode version

Theorem sltsolem1 27946
Description: Lemma for sltso 27947. The sign expansion relationship totally orders the surreal signs. (Contributed by Scott Fenton, 8-Jun-2011.)
Assertion
Ref Expression
sltsolem1  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } )

Proof of Theorem sltsolem1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 7038 . . . . . . . 8  |-  1o  =/=  (/)
2 df-ne 2646 . . . . . . . 8  |-  ( 1o  =/=  (/)  <->  -.  1o  =  (/) )
31, 2mpbi 208 . . . . . . 7  |-  -.  1o  =  (/)
4 eqtr2 2478 . . . . . . 7  |-  ( ( x  =  1o  /\  x  =  (/) )  ->  1o  =  (/) )
53, 4mto 176 . . . . . 6  |-  -.  (
x  =  1o  /\  x  =  (/) )
6 1on 7030 . . . . . . . . 9  |-  1o  e.  On
7 0elon 4873 . . . . . . . . 9  |-  (/)  e.  On
8 df-2o 7024 . . . . . . . . . . 11  |-  2o  =  suc  1o
9 df-1o 7023 . . . . . . . . . . 11  |-  1o  =  suc  (/)
108, 9eqeq12i 2471 . . . . . . . . . 10  |-  ( 2o  =  1o  <->  suc  1o  =  suc  (/) )
11 suc11 4923 . . . . . . . . . 10  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( suc  1o  =  suc  (/)  <->  1o  =  (/) ) )
1210, 11syl5bb 257 . . . . . . . . 9  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( 2o  =  1o  <->  1o  =  (/) ) )
136, 7, 12mp2an 672 . . . . . . . 8  |-  ( 2o  =  1o  <->  1o  =  (/) )
141, 13nemtbir 2776 . . . . . . 7  |-  -.  2o  =  1o
15 eqtr2 2478 . . . . . . . 8  |-  ( ( x  =  2o  /\  x  =  1o )  ->  2o  =  1o )
1615ancoms 453 . . . . . . 7  |-  ( ( x  =  1o  /\  x  =  2o )  ->  2o  =  1o )
1714, 16mto 176 . . . . . 6  |-  -.  (
x  =  1o  /\  x  =  2o )
18 nsuceq0 4900 . . . . . . . 8  |-  suc  1o  =/=  (/)
198eqeq1i 2458 . . . . . . . 8  |-  ( 2o  =  (/)  <->  suc  1o  =  (/) )
2018, 19nemtbir 2776 . . . . . . 7  |-  -.  2o  =  (/)
21 eqtr2 2478 . . . . . . . 8  |-  ( ( x  =  2o  /\  x  =  (/) )  ->  2o  =  (/) )
2221ancoms 453 . . . . . . 7  |-  ( ( x  =  (/)  /\  x  =  2o )  ->  2o  =  (/) )
2320, 22mto 176 . . . . . 6  |-  -.  (
x  =  (/)  /\  x  =  2o )
245, 17, 233pm3.2ni 27506 . . . . 5  |-  -.  (
( x  =  1o 
/\  x  =  (/) )  \/  ( x  =  1o  /\  x  =  2o )  \/  (
x  =  (/)  /\  x  =  2o ) )
25 vex 3074 . . . . . 6  |-  x  e. 
_V
2625, 25brtp 27696 . . . . 5  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x  <->  ( ( x  =  1o  /\  x  =  (/) )  \/  (
x  =  1o  /\  x  =  2o )  \/  ( x  =  (/)  /\  x  =  2o ) ) )
2724, 26mtbir 299 . . . 4  |-  -.  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x
2827a1i 11 . . 3  |-  ( x  e.  { 1o ,  2o ,  (/) }  ->  -.  x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x )
29 vex 3074 . . . . . . 7  |-  y  e. 
_V
3025, 29brtp 27696 . . . . . 6  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  <->  ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
31 vex 3074 . . . . . . 7  |-  z  e. 
_V
3229, 31brtp 27696 . . . . . 6  |-  ( y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z  <->  ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) ) )
33 eqtr2 2478 . . . . . . . . . . . . 13  |-  ( ( y  =  1o  /\  y  =  (/) )  ->  1o  =  (/) )
343, 33mto 176 . . . . . . . . . . . 12  |-  -.  (
y  =  1o  /\  y  =  (/) )
3534pm2.21i 131 . . . . . . . . . . 11  |-  ( ( y  =  1o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
3635ad2ant2rl 748 . . . . . . . . . 10  |-  ( ( ( y  =  1o 
/\  z  =  (/) )  /\  ( x  =  1o  /\  y  =  (/) ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
3736expcom 435 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  1o  /\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
3835ad2ant2rl 748 . . . . . . . . . 10  |-  ( ( ( y  =  1o 
/\  z  =  2o )  /\  ( x  =  1o  /\  y  =  (/) ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
3938expcom 435 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  1o  /\  z  =  2o )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) ) )
40 3mix2 1158 . . . . . . . . . . 11  |-  ( ( x  =  1o  /\  z  =  2o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4140ad2ant2rl 748 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  (/) )  /\  ( y  =  (/)  /\  z  =  2o ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
4241ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  (/)  /\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
4337, 39, 423jaod 1283 . . . . . . . 8  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
44 eqtr2 2478 . . . . . . . . . . . . 13  |-  ( ( y  =  2o  /\  y  =  1o )  ->  2o  =  1o )
4514, 44mto 176 . . . . . . . . . . . 12  |-  -.  (
y  =  2o  /\  y  =  1o )
4645pm2.21i 131 . . . . . . . . . . 11  |-  ( ( y  =  2o  /\  y  =  1o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4746ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  1o  /\  z  =  (/) ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4847ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  1o  /\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
4946ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  1o  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5049ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  1o  /\  z  =  2o )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) ) )
51 eqtr2 2478 . . . . . . . . . . . . 13  |-  ( ( y  =  2o  /\  y  =  (/) )  ->  2o  =  (/) )
5220, 51mto 176 . . . . . . . . . . . 12  |-  -.  (
y  =  2o  /\  y  =  (/) )
5352pm2.21i 131 . . . . . . . . . . 11  |-  ( ( y  =  2o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5453ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  (/)  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5554ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  (/)  /\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5648, 50, 553jaod 1283 . . . . . . . 8  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5746ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  1o  /\  z  =  (/) ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
5857ex 434 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  1o 
/\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5946ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  1o  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6059ex 434 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  1o 
/\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6153ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  (/)  /\  z  =  2o ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
6261ex 434 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  (/)  /\  z  =  2o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6358, 60, 623jaod 1283 . . . . . . . 8  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6443, 56, 633jaoi 1282 . . . . . . 7  |-  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  -> 
( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6564imp 429 . . . . . 6  |-  ( ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  /\  ( ( y  =  1o  /\  z  =  (/) )  \/  ( y  =  1o 
/\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) ) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6630, 32, 65syl2anb 479 . . . . 5  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
6725, 31brtp 27696 . . . . 5  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z  <->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6866, 67sylibr 212 . . . 4  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )  ->  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )
6968a1i 11 . . 3  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) }  /\  z  e.  { 1o ,  2o ,  (/) } )  ->  ( ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } z )  ->  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } z ) )
7025eltp 4022 . . . . 5  |-  ( x  e.  { 1o ,  2o ,  (/) }  <->  ( x  =  1o  \/  x  =  2o  \/  x  =  (/) ) )
7129eltp 4022 . . . . 5  |-  ( y  e.  { 1o ,  2o ,  (/) }  <->  ( y  =  1o  \/  y  =  2o  \/  y  =  (/) ) )
72 eqtr3 2479 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  1o )  ->  x  =  y )
73723mix2d 1164 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  1o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
7473ex 434 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  1o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
75 3mix2 1158 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
76753mix1d 1163 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
7776ex 434 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  2o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
78 3mix1 1157 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
79783mix1d 1163 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8079ex 434 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  (/)  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
8174, 77, 803jaod 1283 . . . . . . 7  |-  ( x  =  1o  ->  (
( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
82 3mix2 1158 . . . . . . . . . 10  |-  ( ( y  =  1o  /\  x  =  2o )  ->  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
83823mix3d 1165 . . . . . . . . 9  |-  ( ( y  =  1o  /\  x  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8483expcom 435 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  1o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
85 eqtr3 2479 . . . . . . . . . 10  |-  ( ( x  =  2o  /\  y  =  2o )  ->  x  =  y )
86853mix2d 1164 . . . . . . . . 9  |-  ( ( x  =  2o  /\  y  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8786ex 434 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  2o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
88 3mix3 1159 . . . . . . . . . 10  |-  ( ( y  =  (/)  /\  x  =  2o )  ->  (
( y  =  1o 
/\  x  =  (/) )  \/  ( y  =  1o  /\  x  =  2o )  \/  (
y  =  (/)  /\  x  =  2o ) ) )
89883mix3d 1165 . . . . . . . . 9  |-  ( ( y  =  (/)  /\  x  =  2o )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9089expcom 435 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  (/)  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
9184, 87, 903jaod 1283 . . . . . . 7  |-  ( x  =  2o  ->  (
( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
92 3mix1 1157 . . . . . . . . . 10  |-  ( ( y  =  1o  /\  x  =  (/) )  -> 
( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
93923mix3d 1165 . . . . . . . . 9  |-  ( ( y  =  1o  /\  x  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9493expcom 435 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  1o  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
95 3mix3 1159 . . . . . . . . . 10  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) ) )
96953mix1d 1163 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9796ex 434 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  2o  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
98 eqtr3 2479 . . . . . . . . . 10  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  x  =  y )
99983mix2d 1164 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
10099ex 434 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  (/)  ->  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
10194, 97, 1003jaod 1283 . . . . . . 7  |-  ( x  =  (/)  ->  ( ( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
10281, 91, 1013jaoi 1282 . . . . . 6  |-  ( ( x  =  1o  \/  x  =  2o  \/  x  =  (/) )  -> 
( ( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
103102imp 429 . . . . 5  |-  ( ( ( x  =  1o  \/  x  =  2o  \/  x  =  (/) )  /\  ( y  =  1o  \/  y  =  2o  \/  y  =  (/) ) )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
10470, 71, 103syl2anb 479 . . . 4  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) } )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
105 biid 236 . . . . 5  |-  ( x  =  y  <->  x  =  y )
10629, 25brtp 27696 . . . . 5  |-  ( y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x  <->  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
10730, 105, 1063orbi123i 1178 . . . 4  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  \/  x  =  y  \/  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x )  <->  ( (
( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
108104, 107sylibr 212 . . 3  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) } )  ->  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } y  \/  x  =  y  \/  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x ) )
10928, 69, 108issoi 4773 . 2  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  { 1o ,  2o ,  (/) }
110 df-tp 3983 . . 3  |-  { 1o ,  2o ,  (/) }  =  ( { 1o ,  2o }  u.  { (/) } )
111 soeq2 4762 . . 3  |-  ( { 1o ,  2o ,  (/)
}  =  ( { 1o ,  2o }  u.  { (/) } )  -> 
( { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  { 1o ,  2o ,  (/) }  <->  { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } ) ) )
112110, 111ax-mp 5 . 2  |-  ( {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  Or  { 1o ,  2o ,  (/)
}  <->  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/)
} ) )
113109, 112mpbi 208 1  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 964    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644    u. cun 3427   (/)c0 3738   {csn 3978   {cpr 3980   {ctp 3982   <.cop 3984   class class class wbr 4393    Or wor 4741   Oncon0 4820   suc csuc 4822   1oc1o 7016   2oc2o 7017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-tr 4487  df-eprel 4733  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-suc 4826  df-1o 7023  df-2o 7024
This theorem is referenced by:  sltso  27947
  Copyright terms: Public domain W3C validator