Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltsolem1 Structured version   Unicode version

Theorem sltsolem1 27760
Description: Lemma for sltso 27761. The sign expansion relationship totally orders the surreal signs. (Contributed by Scott Fenton, 8-Jun-2011.)
Assertion
Ref Expression
sltsolem1  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } )

Proof of Theorem sltsolem1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 6927 . . . . . . . 8  |-  1o  =/=  (/)
2 df-ne 2603 . . . . . . . 8  |-  ( 1o  =/=  (/)  <->  -.  1o  =  (/) )
31, 2mpbi 208 . . . . . . 7  |-  -.  1o  =  (/)
4 eqtr2 2456 . . . . . . 7  |-  ( ( x  =  1o  /\  x  =  (/) )  ->  1o  =  (/) )
53, 4mto 176 . . . . . 6  |-  -.  (
x  =  1o  /\  x  =  (/) )
6 1on 6919 . . . . . . . . 9  |-  1o  e.  On
7 0elon 4767 . . . . . . . . 9  |-  (/)  e.  On
8 df-2o 6913 . . . . . . . . . . 11  |-  2o  =  suc  1o
9 df-1o 6912 . . . . . . . . . . 11  |-  1o  =  suc  (/)
108, 9eqeq12i 2451 . . . . . . . . . 10  |-  ( 2o  =  1o  <->  suc  1o  =  suc  (/) )
11 suc11 4817 . . . . . . . . . 10  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( suc  1o  =  suc  (/)  <->  1o  =  (/) ) )
1210, 11syl5bb 257 . . . . . . . . 9  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( 2o  =  1o  <->  1o  =  (/) ) )
136, 7, 12mp2an 672 . . . . . . . 8  |-  ( 2o  =  1o  <->  1o  =  (/) )
141, 13nemtbir 2695 . . . . . . 7  |-  -.  2o  =  1o
15 eqtr2 2456 . . . . . . . 8  |-  ( ( x  =  2o  /\  x  =  1o )  ->  2o  =  1o )
1615ancoms 453 . . . . . . 7  |-  ( ( x  =  1o  /\  x  =  2o )  ->  2o  =  1o )
1714, 16mto 176 . . . . . 6  |-  -.  (
x  =  1o  /\  x  =  2o )
18 nsuceq0 4794 . . . . . . . 8  |-  suc  1o  =/=  (/)
198eqeq1i 2445 . . . . . . . 8  |-  ( 2o  =  (/)  <->  suc  1o  =  (/) )
2018, 19nemtbir 2695 . . . . . . 7  |-  -.  2o  =  (/)
21 eqtr2 2456 . . . . . . . 8  |-  ( ( x  =  2o  /\  x  =  (/) )  ->  2o  =  (/) )
2221ancoms 453 . . . . . . 7  |-  ( ( x  =  (/)  /\  x  =  2o )  ->  2o  =  (/) )
2320, 22mto 176 . . . . . 6  |-  -.  (
x  =  (/)  /\  x  =  2o )
245, 17, 233pm3.2ni 27320 . . . . 5  |-  -.  (
( x  =  1o 
/\  x  =  (/) )  \/  ( x  =  1o  /\  x  =  2o )  \/  (
x  =  (/)  /\  x  =  2o ) )
25 vex 2970 . . . . . 6  |-  x  e. 
_V
2625, 25brtp 27510 . . . . 5  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x  <->  ( ( x  =  1o  /\  x  =  (/) )  \/  (
x  =  1o  /\  x  =  2o )  \/  ( x  =  (/)  /\  x  =  2o ) ) )
2724, 26mtbir 299 . . . 4  |-  -.  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x
2827a1i 11 . . 3  |-  ( x  e.  { 1o ,  2o ,  (/) }  ->  -.  x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x )
29 vex 2970 . . . . . . 7  |-  y  e. 
_V
3025, 29brtp 27510 . . . . . 6  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  <->  ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
31 vex 2970 . . . . . . 7  |-  z  e. 
_V
3229, 31brtp 27510 . . . . . 6  |-  ( y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z  <->  ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) ) )
33 eqtr2 2456 . . . . . . . . . . . . 13  |-  ( ( y  =  1o  /\  y  =  (/) )  ->  1o  =  (/) )
343, 33mto 176 . . . . . . . . . . . 12  |-  -.  (
y  =  1o  /\  y  =  (/) )
3534pm2.21i 131 . . . . . . . . . . 11  |-  ( ( y  =  1o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
3635ad2ant2rl 748 . . . . . . . . . 10  |-  ( ( ( y  =  1o 
/\  z  =  (/) )  /\  ( x  =  1o  /\  y  =  (/) ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
3736expcom 435 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  1o  /\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
3835ad2ant2rl 748 . . . . . . . . . 10  |-  ( ( ( y  =  1o 
/\  z  =  2o )  /\  ( x  =  1o  /\  y  =  (/) ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
3938expcom 435 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  1o  /\  z  =  2o )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) ) )
40 3mix2 1158 . . . . . . . . . . 11  |-  ( ( x  =  1o  /\  z  =  2o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4140ad2ant2rl 748 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  (/) )  /\  ( y  =  (/)  /\  z  =  2o ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
4241ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  (/)  /\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
4337, 39, 423jaod 1282 . . . . . . . 8  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
44 eqtr2 2456 . . . . . . . . . . . . 13  |-  ( ( y  =  2o  /\  y  =  1o )  ->  2o  =  1o )
4514, 44mto 176 . . . . . . . . . . . 12  |-  -.  (
y  =  2o  /\  y  =  1o )
4645pm2.21i 131 . . . . . . . . . . 11  |-  ( ( y  =  2o  /\  y  =  1o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4746ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  1o  /\  z  =  (/) ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4847ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  1o  /\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
4946ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  1o  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5049ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  1o  /\  z  =  2o )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) ) )
51 eqtr2 2456 . . . . . . . . . . . . 13  |-  ( ( y  =  2o  /\  y  =  (/) )  ->  2o  =  (/) )
5220, 51mto 176 . . . . . . . . . . . 12  |-  -.  (
y  =  2o  /\  y  =  (/) )
5352pm2.21i 131 . . . . . . . . . . 11  |-  ( ( y  =  2o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5453ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  (/)  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5554ex 434 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  (/)  /\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5648, 50, 553jaod 1282 . . . . . . . 8  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5746ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  1o  /\  z  =  (/) ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
5857ex 434 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  1o 
/\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5946ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  1o  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6059ex 434 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  1o 
/\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6153ad2ant2lr 747 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  (/)  /\  z  =  2o ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
6261ex 434 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  (/)  /\  z  =  2o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6358, 60, 623jaod 1282 . . . . . . . 8  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6443, 56, 633jaoi 1281 . . . . . . 7  |-  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  -> 
( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6564imp 429 . . . . . 6  |-  ( ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  /\  ( ( y  =  1o  /\  z  =  (/) )  \/  ( y  =  1o 
/\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) ) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6630, 32, 65syl2anb 479 . . . . 5  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
6725, 31brtp 27510 . . . . 5  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z  <->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6866, 67sylibr 212 . . . 4  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )  ->  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )
6968a1i 11 . . 3  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) }  /\  z  e.  { 1o ,  2o ,  (/) } )  ->  ( ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } z )  ->  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } z ) )
7025eltp 3916 . . . . 5  |-  ( x  e.  { 1o ,  2o ,  (/) }  <->  ( x  =  1o  \/  x  =  2o  \/  x  =  (/) ) )
7129eltp 3916 . . . . 5  |-  ( y  e.  { 1o ,  2o ,  (/) }  <->  ( y  =  1o  \/  y  =  2o  \/  y  =  (/) ) )
72 eqtr3 2457 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  1o )  ->  x  =  y )
73723mix2d 1164 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  1o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
7473ex 434 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  1o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
75 3mix2 1158 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
76753mix1d 1163 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
7776ex 434 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  2o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
78 3mix1 1157 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
79783mix1d 1163 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8079ex 434 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  (/)  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
8174, 77, 803jaod 1282 . . . . . . 7  |-  ( x  =  1o  ->  (
( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
82 3mix2 1158 . . . . . . . . . 10  |-  ( ( y  =  1o  /\  x  =  2o )  ->  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
83823mix3d 1165 . . . . . . . . 9  |-  ( ( y  =  1o  /\  x  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8483expcom 435 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  1o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
85 eqtr3 2457 . . . . . . . . . 10  |-  ( ( x  =  2o  /\  y  =  2o )  ->  x  =  y )
86853mix2d 1164 . . . . . . . . 9  |-  ( ( x  =  2o  /\  y  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8786ex 434 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  2o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
88 3mix3 1159 . . . . . . . . . 10  |-  ( ( y  =  (/)  /\  x  =  2o )  ->  (
( y  =  1o 
/\  x  =  (/) )  \/  ( y  =  1o  /\  x  =  2o )  \/  (
y  =  (/)  /\  x  =  2o ) ) )
89883mix3d 1165 . . . . . . . . 9  |-  ( ( y  =  (/)  /\  x  =  2o )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9089expcom 435 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  (/)  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
9184, 87, 903jaod 1282 . . . . . . 7  |-  ( x  =  2o  ->  (
( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
92 3mix1 1157 . . . . . . . . . 10  |-  ( ( y  =  1o  /\  x  =  (/) )  -> 
( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
93923mix3d 1165 . . . . . . . . 9  |-  ( ( y  =  1o  /\  x  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9493expcom 435 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  1o  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
95 3mix3 1159 . . . . . . . . . 10  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) ) )
96953mix1d 1163 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9796ex 434 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  2o  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
98 eqtr3 2457 . . . . . . . . . 10  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  x  =  y )
99983mix2d 1164 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
10099ex 434 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  (/)  ->  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
10194, 97, 1003jaod 1282 . . . . . . 7  |-  ( x  =  (/)  ->  ( ( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
10281, 91, 1013jaoi 1281 . . . . . 6  |-  ( ( x  =  1o  \/  x  =  2o  \/  x  =  (/) )  -> 
( ( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
103102imp 429 . . . . 5  |-  ( ( ( x  =  1o  \/  x  =  2o  \/  x  =  (/) )  /\  ( y  =  1o  \/  y  =  2o  \/  y  =  (/) ) )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
10470, 71, 103syl2anb 479 . . . 4  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) } )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
105 biid 236 . . . . 5  |-  ( x  =  y  <->  x  =  y )
10629, 25brtp 27510 . . . . 5  |-  ( y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x  <->  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
10730, 105, 1063orbi123i 1177 . . . 4  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  \/  x  =  y  \/  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x )  <->  ( (
( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
108104, 107sylibr 212 . . 3  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) } )  ->  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } y  \/  x  =  y  \/  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x ) )
10928, 69, 108issoi 4667 . 2  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  { 1o ,  2o ,  (/) }
110 df-tp 3877 . . 3  |-  { 1o ,  2o ,  (/) }  =  ( { 1o ,  2o }  u.  { (/) } )
111 soeq2 4656 . . 3  |-  ( { 1o ,  2o ,  (/)
}  =  ( { 1o ,  2o }  u.  { (/) } )  -> 
( { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  { 1o ,  2o ,  (/) }  <->  { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } ) ) )
112110, 111ax-mp 5 . 2  |-  ( {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  Or  { 1o ,  2o ,  (/)
}  <->  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/)
} ) )
113109, 112mpbi 208 1  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 964    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601    u. cun 3321   (/)c0 3632   {csn 3872   {cpr 3874   {ctp 3876   <.cop 3878   class class class wbr 4287    Or wor 4635   Oncon0 4714   suc csuc 4716   1oc1o 6905   2oc2o 6906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-tr 4381  df-eprel 4627  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-suc 4720  df-1o 6912  df-2o 6913
This theorem is referenced by:  sltso  27761
  Copyright terms: Public domain W3C validator