Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltso Structured version   Unicode version

Theorem sltso 29603
Description: Surreal less than totally orders the surreals. Alling's axiom (O). (Contributed by Scott Fenton, 9-Jun-2011.)
Assertion
Ref Expression
sltso  |-  <s  Or  No

Proof of Theorem sltso
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sltsolem1 29602 . 2  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } )
2 df-no 29577 . 2  |-  No  =  { f  |  E. x  e.  On  f : x --> { 1o ,  2o } }
3 df-slt 29578 . 2  |-  <s 
=  { <. f ,  g >.  |  ( ( f  e.  No  /\  g  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( f `  y )  =  ( g `  y )  /\  ( f `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) ) ) }
4 nosgnn0 29592 . 2  |-  -.  (/)  e.  { 1o ,  2o }
51, 2, 3, 4soseq 29508 1  |-  <s  Or  No
Colors of variables: wff setvar class
Syntax hints:   (/)c0 3793   {cpr 4034   {ctp 4036   <.cop 4038    Or wor 4808   1oc1o 7141   2oc2o 7142   Nocsur 29574   <scslt 29575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-1o 7148  df-2o 7149  df-no 29577  df-slt 29578
This theorem is referenced by:  sltirr  29604  slttr  29605  slttri  29607  slttrieq2  29608
  Copyright terms: Public domain W3C validator